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EXECUTIVE SUMMARY

The goal of the MISTE (MIcrogravity Scaling Theory Experiment) is to provide a stringent
test of scaling theory predictions for critical behavior near a liquid-gas critical point both in the
asymptotic and crossover regions.  The introduction of the homogeneous postulate for the
singular part of thermodynamic quantities has led to a set of scaling relations between the critical
exponents that describe the expected leading and confluent power law divergences.  The
application of Renormalization Group (RG) theory to the study of critical points has provided a
fundamental justification for the scaling relations.  This RG theory has been used to calculate
accurate values of the critical exponents and universal asymptotic amplitude ratios for a wide
range of universality classes.  The most recently calculated values for these exponents are
believed to be highly accurate, and a majority of the scientific community is confident that these
predictions correctly describe the asymptotic behavior of these systems.  However, the situation
is less well understood regarding the asymptotic amplitude ratios and the behavior in the
crossover region where critical fluctuations no longer dominate the behavior of the system.

The last several decades have witnessed widespread efforts to test theoretical predictions
near critical points.  In the early years emphasis was placed on theoretical and experimental
studies of the liquid-gas critical point because of the fact that this system permitted the
measurement of a wide variety of thermophysical properties within the critical region.  This is in
contrast to the lambda point in liquid 4He, where certain thermophysical quantities, such as the
order parameter and its conjugate field, are not physically accessible because of the quantum-
mechanical nature of the superfluid wave function.  Unfortunately, the liquid-gas critical point is
subject to limitations resulting from the effects of gravity.  In this system, gravity couples
directly to the order parameter, which is the difference between the system's density and the
critical density.  In the earth’s gravitational field, gravity induces a density stratification in a fluid
layer of finite vertical height, and this stratification interferes with precision measurements close
to the transition.  For example, measurements along the critical isochore, even in a small vertical
height cell of 0.05 cm, are affected by gravity within a reduced temperature of
|t| ≡ |(T–Tc)/Tc| ≤ 10-4.  The asymptotic region, where the leading singular term dominates the
divergence of thermophysical properties, occurs in the same reduced temperature range.  The
overlap of these two regions has severely limited the experimentalist’s ability to accurately test
theoretical predictions.  It is for these reasons that MISTE was proposed to perform a set of
thermodynamic measurements very close to the liquid-gas critical point of 3He in a microgravity
environment.

The MISTE flight experiment plans to perform specific heat at constant volume, CV,
isothermal susceptibility, χT, and PVT measurements in the same experimental cell.  This
approach will minimize previous systematic errors, associated with performing various
thermodynamic measurements in different apparatuses, by determining a self-consistent set of
critical-point parameters (Pc, ρc, and Tc).  In the microgravity experiment, we propose to extend
the same thermodynamic measurements preformed on the ground to the region closer to the
transition.  Our objective is to obtain gravity-free measurements at least two decades in reduced
temperature closer to the transition than can be obtained on the ground.  This measurement region
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will still be bracketed by gravity rounding close to the transition, and a departure from the
asymptotic critical behavior with crossover into the classical regime farther away from the
transition.  Measurements along the theoretically important critical isochore and critical isotherm
will be emphasized.  The quality of the data very close to the transition will be tested by
comparing the critical exponents α, γ, and δ obtained from a best-fit procedure with theoretical
scaling predictions.  Then the leading asymptotic critical amplitudes of CV and χT measured along
critical paths will be determined while fixing the critical exponents.

The microgravity experiments should permit an accurate determination of the nonuniversal
asymptotic critical amplitudes associated with the 3He liquid-gas critical point.  Knowledge of
these asymptotic amplitudes can then be used to test universal amplitude ratio predictions as
well as provide a more accurate analysis of crossover measurements farther away from the
transition.  This analysis of measurements throughout the critical region should permit a stringent
test of the predictions of recent crossover theories.  In addition, the specific heat and
susceptibility data coupled with the PVT data will be used to test recent theoretical predictions
for the scaled equation-of-state in both the asymptotic and crossover regions.  The measurements
obtained from MISTE will also serve as a guide to those who are engaged in further development
of crossover models.

The singularities of thermophysical quantities in the critical region lead to a “critical slowing
down” effect.  The consequence of this effect is that the time to reach thermodynamic equilibrium
becomes very long as the critical point is approached.  Because of this effect, a long-duration
flight experiment will be necessary to accurately measure the proposed thermodynamic quantities
in the critical region.  The estimated time to perform these measurements is much longer than can
be provided by the Space Shuttle and will require the use of the International Space Station for 3
to 5 months.

During the last several years, ground-based studies in the critical region of 3He were
performed at the Jet Propulsion Laboratory to validate the precision of the proposed
experimental techniques for achieving the objectives of the MISTE flight experiment.  The results
of these studies and the status of our scientific readiness for flight are presented.  The science
requirements for the flight experiment and any additional planned ground-based science and
engineering studies are also discussed.
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1. INTRODUCTION

In this section we present a brief introduction to critical phenomena, the importance of the
liquid-gas critical point in testing theories, and the motivation for performing experiments in
microgravity.

1.1 Critical Phenomena/Liquid-Gas Critical Point

Phase transitions are ubiquitous in nature and the investigation of these phenomena is
important in understanding the nature of the universe.  A significant subset of all phase
transitions is the continuous or “critical point” phase transition.  Critical points differ from
first–order transitions in several respects.  In the first place there is no discontinuity in the first
derivatives of the thermodynamic potentials.  One such discontinuity is associated with latent
heat.  Furthermore, continuous phase transitions do not exhibit irreversibility in the form of
hysteresis.  A key feature of the continuous phase transition is scale-invariance, which implies
continuity between large and small scales associated with the transition.  Scale-invariance occurs
in many systems that are still not completely understood, such as the universe at the onset of the
big bang as currently envisioned by cosmologists, the clustering of galaxies, massless fields in
elementary particle physics, the distribution of earthquakes, and turbulence in fluids and
plasmas.  In each of these examples there is a wide range of scales over which some phenomena
vary as a power law of the scale.  The Renormalization Group (RG) theory [1] is the most
successful approach thus far developed to derive and explore the relations between the
characteristics of a system as viewed on different length scales.

Critical phenomena, associated with continuous phase transitions, can be described on a
variety of levels [2,3].  We will discuss these levels in the context of thermophysical behavior
near the liquid-gas critical point.  First, there is the fact that thermophysical quantities exhibit
power law behavior near critical points.  This power law behavior depends on the paths
approaching the critical point as shown in Figure 1.  For example, the isothermal susceptibility
diverges as χ γ

T t∝ + −Γ0  along the path of the critical isochore, ρ = ρc, above the transition and as
χ γ

T t∝ − − ′Γ0 along the coexistence curve below the transition.  Γ0
±  are the leading asymptotic

critical amplitudes, with the superscript ± defining the single (+) or two-phase (–) regions.  By
contrast, the constant-volume specific heat takes on the asymptotic power law form of
CV ∝  A t0

+ −α  along the critical isochore above Tc and CV ∝  A t0
− −α ' below Tc.  Here the quantities α

α′, γ, and γ ′ are known as critical exponents.  Along the critical isotherm, T = Tc, the variation of
pressure with density is given by ∆P ∝  D∆ρ|∆ρ|δ-1 where ∆P = (P - Pc)/Pc is the reduced
pressure, ∆ρ = (ρ - ρc)/ρc is the reduced density and δ is the critical exponent that describes this
singular behavior.  In the two-phase region, the coexistence curve can be described as
∆ρL,V ≡ (ρL,V - ρc)/ρc ∝  B0(-t)

β, where L and V correspond to the liquid and vapor phases
respectively.  The latest RG predictions for the critical exponents obtained from a 7-loop
calculation [4] are 1

                                                
1 High-temperature series [5] predicts α = 0.105 ± 0.007 and γ = 1.2395 ± 0.0004.
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α = 0.109 ± 0.004, (1)

γ = 1.2396 ± 0.0013, (2)

δ = 4.8055 ± 0.0119, (3)

β = 0.3258 ± 0.0014, (4)

with α = α′ and γ = γ ′.  In addition, the RG approach is able to calculate values for a number of
universal asymptotic amplitude ratios.  The amplitude ratios that are important for the MISTE
flight experiment are [6]:

A A0 0
+ −  = 0.523 ± 0.0092

Γ Γ0 0
+ −  = 4.95 ± 0.15

αA B0 0 0
2+ +Γ   = 0.0581 ± 0.0010

D BΓ0 0
1 1 57 0 23+ − = ±δ . . (5)

The experimentally observed power law singularities in critical phenomena led to the
formulation of the homogeneity postulate [3].  This postulate assumes that the singular part of
diverging thermodynamic properties is a generalized function of the reduced temperature and
reduced density.  This hypothesis is intimately linked to the scaled equation-of-state (see
                                                
2 A 3-D analysis yields A A0 0

+ −  = 0.537 ± 0.019 [4].
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Fig. 1.  Schematic representation of the critical region in the T, ρ plane.
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Appendix A).  Various researchers have developed scaled equations-of-state based on the RG [7].
These equations-of-state, which are meant to apply in the asymptotic critical region, have the
expected scaling form, and they also make specific predictions for the curves on which
thermodynamic functions will lie as one measures them along trajectories in the phase diagram.
The best current predictions [7] for the equation-of-state of the liquid-gas system based on RG
methods are not as precise as the results for critical exponents.  

The homogeneity postulate leads to relations between critical exponents at the next level of
critical phenomena.  These relations are called scaling laws.  This postulate claims that only two
critical exponents are independent.  A well-known scaling law example is the relation

α + 2β + γ = 2. (6)

This scaling relation allows one to determine the critical exponent β if the values of α  and γ are
already known.  

Finally, there are the hyperscaling relations, in which the critical exponents are predicted to
depend in specified ways on the behavior of spatial correlations in the system and on the
system’s spatial dimensionality d.  An example of a hyperscaling law is

    
δ η

η
= + −

− +
d
d

2
2

 . (7)

The exponent η describes the power-law behavior of the two-point correlation function (a
fluctuation-response relation) at the critical point.  It has the value

η = 0.0335 ± 0.0025 (8)

obtained from a 7-loop calculation [4].  Another typical hyperscaling relation, namely the
Josephson’s relation, is given by

α = 2 - dν, (9)

where ν is the critical exponent for the correlation length, ξ ∝  t-ν with the value

v = 0.6304 ± 0.0013 (10)

obtained from a 7-loop calculation [4].  Using the fundamental relationship between the
susceptibility and the correlation function and Eq. (7), we arrive at another hyperscaling relation

γ = ν(2 - η). (11)

By combining Eqs. (9) and (11), one obtains

    

2
2

1 52555 0 00194
− =

−
= ±α

γ η
d

. .  , (12)

which is evaluated for a liquid-gas critical point using Eq. (8) and d = 3.  The substitution of η in
Eq. (12) and using Eq. (7) leads to the following scaling relation between α, γ, and δ,

  

2 1
1

− = +
−

α
γ

δ
δ

 . (13)
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At all three levels of critical phenomena (power laws, scaling relations, and hyperscaling
relations), the RG theory supplies the intellectual justification for observed and conjectured
relationships.  In fact, the formulation of the RG theory [1] presupposes the existence of the
above three classes of phenomena.  At this time, both theoreticians and experimentalists widely
believe in the validity of RG predictions for the asymptotic behavior in most, if not all, systems
exhibiting critical-point behavior.  The experimental analysis of the CV and χT data obtained from
MISTE can be used to estimate the three asymptotic exponents α, γ, and δ.  A test of the quality
of the MISTE data in the asymptotic region will come from a comparison to the theoretical
predictions given in Eqs. (1 - 3) and Eq. (13).  Furthermore, the analysis of the MISTE data will
provide more accurate values for the leading asymptotic critical amplitudes that can be used to
test the theoretical amplitude ratio predictions given in Eq. (5).

An exact determination of the asymptotic region cannot be made theoretically because the
leading critical amplitudes are system dependent, and there are additional correction-to-scaling
confluent singularities that also contain system-dependent amplitudes.  Furthermore, most
experimental measurements performed on the ground appear to be outside the asymptotic region.
Because of these facts, the theoretical community has used RG theory to develop confluent
singularity corrections to the asymptotic behavior [8-11].  In real fluids, other nonasymptotic
corrections due to liquid-vapor asymmetry in the coexistence curve [12] and analytic background
terms also come into play.  Taking into account these correction-to-scaling terms leads to the
following theoretical expressions:

C T P C A t A t A t BV c c c V a sh
s± ± ± − ± ± −≡ ( ) = + +[ ] + +*

| | | | ... | |ρ α γ α
0 1

21 ∆ (14)

χ ρ χ γ α
χT c c T aP t t t Bs± ± ± − ± ± −≡ ( ) = + +[ ] + +*

| | | | ... | |2
0 11Γ Γ Γ∆ (15)

∆ ∆ρ ρ ρ ρ β α*
, | | | | ... | |( ) ≡ −( ) = ± + +[ ] + −

cxc L V c c aB t B t B t ts

0 11 (16)

where Bsh and Bχ  are background terms and Ba  is the coefficient of the singular diameter of the
coexistence curve [13],

ρ ρ ρ α
L V c aB t t+( ) = −2 | | . (17)

The confluent singularity expansion in the brackets, commonly referred to as the Wegner
expansion, includes a new independent universal correction-to-scaling exponent [10,11],
∆ s = ±0 52 0 03. . .  It is generally assumed that the first Wegner correction-to-scaling terms, A1

± ,
Γ1

± , and B1  cover the experimental range 10-3 ≤ |t| ≤ 10-2.  In the case of the specific heat, the
background term consists of two terms [14,15]:

B B Bsh cr sh= + 0 , (18)

where Bcr  is a constant, fluctuation-induced term associated with the critical singularity in CV

and Bsh0 is the specific heat analytic background term.  It is important to note that in 3He, Brown
and Meyer [16] found that the total background term Bsh is 0.0 ± 0.5, while in SF6 that term is
19.92 ± 0.2 [17].  Thus, it appears that for 3He, the critical part of the background is essentially
equal and opposite to the analytic part.  There is also a higher-than-linear term in the analytic
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expansions that is associated with the asymmetry in the coexistence curve.  However, the
coexistence curve of 3He is the most symmetric of all the pure fluids [18], the rectilinear diameter
being ~ 30 times smaller than the room-temperature critical-point fluids CO2, SF6, and Xe.  Thus,
we expect the magnitude of this asymmetric term to be small for the case of 3He and it was not
included in Eq. (16).

The system-dependent correction-to-scaling amplitudes also enter into universal amplitude
ratios [11,19]

A1 1 0 9 0 1+ + = ±Γ . . (19)

B1 1 0 8 0 2+ + = ±Γ . . (20)

and [20]

− = = −( )+ + + +A A Ba a aΓ Γ0 0
2 21 α . (21)

It is clear from Eqs. (14 - 16) that there are a large number of adjustable parameters that need
to be defined experimentally.  Even with high-precision ground-based data, the ability to define
these parameters is limited.  By going to a microgravity environment, it is possible to obtain a
sufficient amount of new data closer to the transition to permit a determination of the asymptotic
critical parameters and amplitudes without considering data in the crossover region.  In this way,
the data farther away from the transition in the crossover region can then be analyzed using a
reduced number of adjustable parameters.

In principle, the Wegner expansion can define the crossover from the asymptotic scaling
region to classical mean field behavior.  However, it is impractical to experimentally measure the
amplitudes associated with higher-order Wegner terms.  Because of this, other theoretical
approaches have been studied to define crossover behavior.  See Appendix A for a more detailed
discussion of the presently available crossover models.  Most of these approaches are based on
the RG theory.  Of particular interest to the MISTE experiment is the field-theoretical RG
theory based on the φ4 model developed by V. Dohm and coworkers [21].  This model extends
the Ginzburg-Landau-Wilson theory by including critical fluctuations.  This field-theoretical
approach has successfully been applied to the case of the lambda point [22], which is in the O(2)
universality class.  Recently, theoretical expressions have also been developed [23] to apply this
technique to the O(1) universality class that contains the liquid-gas critical point.

The experimental systems best suited for the verification of critical phenomena theories are
critical points in fluids.  This is because measurements in solids are compromised by the
inhomogeneities that are inevitably incorporated into them.  By contrast, in fluids such
imperfections are averaged away.  Because of this, the most accurate and definitive determination
of critical point properties are those that have been achieved in fluids.  The most studied fluid
critical points are the lambda transition in liquid helium and the liquid-gas critical point, which is
present in all single-component fluids.  With regard to the testing of critical point theories, it is
important to understand the differences between these two systems.  The simple liquid-gas
system and superfluid helium represent two examples of so-called O(n) models.  The liquid-gas
system is in the O(1) universality class, while the lambda point is governed by the physics of the
O(2) model.  For all its experimental advantages, such as minimal gravity effect and ideal thermal
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properties, the lambda point suffers from the shortcoming that the order parameter is a
macroscopic wave function, and the thermodynamic field that couples directly to it (the analog of
an external magnetic field in the case of a ferromagnet) does not exist.  For example, there is no
simple way to physically manipulate the superfluid wave function in such a way as to extract the
discontinuity that is associated with the exponent β.  Because of this, many scaling relations can
never be tested at the lambda point.  By contrast, all fields can be experimentally realized and
manipulated in the case of the liquid-gas system, the order parameter of which is the difference
between the system's density and the critical density.  This allows for a systematic and complete
investigation of the phase diagram in the vicinity of the critical point.

Table I.  The critical exponents, obtained from the measurements of
various simple fluids [24].

Exponents Xe SF6 CO2

α 0.11 0.08 0.10

β 0.329 0.321 0.321

γ 1.23 1.28 1.24

δ 4.74 4.99 4.85

η 0.05 -0 -0

Tc (˚C) 16.56 45.55 30.99

In the ‘70s, Moldover and others [24] carried out experimental measurements on various
simple fluids near their respective critical points and obtained the experimental values of the
critical exponents listed in Table I.  These updated experiments removed earlier discrepancies
between the critical exponents of the Ising model and experimental measurements.  The
convergence of these experimental results and theoretical predictions played an important role in
the widespread acceptance of the RG predictions of asymptotic behavior.  Indeed, the most often
quoted theoretical values for critical exponents are those obtained through RG calculations (as
opposed, for example, to the analysis of high-temperature series).

The opportunity to perform low temperature measurements in a microgravity environment
has led to a renewed interest in testing critical phenomena theories.  We have proposed the use of
3He for studies in space.  There are many advantages for choosing 3He for future microgravity
studies.  First, 3He has an extraordinarily symmetric coexistence curve.  The rectilinear diameter
of 3He is the smallest among all the simple fluids [18]; thus, it most closely approaches the
simplest models for the equation-of-state.  Secondly, at low temperatures, all impurities are
frozen out except 4He, which is less than 1 part per million for commercially available 3He gas.
Probably the most important reason for considering 3He is the fact that its liquid-gas critical
point is very close to the lambda point.  Over the last several decades, an advanced SQUID-
based, high-resolution thermometer (HRT) was developed to perform microgravity
measurements within a nanodegree (nK) of the lambda transition.  We are now using this HRT
technique to study the 3He liquid-gas critical point.  It is also important to note that at the 3He
critical point, (Tc/Pc)(∂P/∂T)V ~ 3.4.  Thus, a temperature resolution of even δT/T ~ 10–8 will only
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introduce a pressure variation of δP/P ~ 3×10–8.  This pressure variation will permit pressure
measurements with much higher resolution than were attainable in previous studies where only
microdegree resolution was achievable.  Also, 3He has the lowest temperature liquid-gas critical
point of any fluid.  Thus, there is the possibility that quantum effects may influence the system-
dependent critical amplitudes and range of crossover behavior near the transition [25].  An
additional motivation for choosing the 3He critical point is the extensive ground-based studies of
the static and dynamic properties carried out primarily by Horst Meyer’s group at Duke
University.  In the ‘70s, his group systematically measured the thermodynamic properties of 3He
near its liquid-gas critical point [16,18,26].  One possible disadvantage for choosing 3He is the
strong gravity effect for this transition.  However, as will be seen, the proposed microgravity
experiment will significantly reduce the effect of gravity to such an extent that sensor resolution
will actually be the limiting factor in obtaining data close to the transition.
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1.2 Need For Microgravity

As we have seen, the consensus among most theoreticians and experimentalists is that the
theoretically calculated asymptotic critical exponents are essentially correct.  However, because
of gravitational effects, ground-based measurements do not sufficiently extend into the
asymptotic region to accurately determine the leading nonuniversal critical amplitudes.  Without
accurate knowledge of these leading amplitudes, it is very difficult to test models of the equation-
of-state.  Precision experimental measurements [24] have demonstrated that true asymptotic
critical behavior often occurs only when the critical temperature is approached along the critical
isochore within |t| ≤ 10-4.  Unfortunately, the hydrostatic pressure in a liquid is not constant in a
gravitational field and near the critical point, a gravity-induced density stratification becomes
important for most measurements within |t| ≤ 10-4.  Thus, gravity effects have precluded detailed
experimental studies in the asymptotic region near liquid-gas critical points.  The ability to
perform measurements in a microgravity environment now make it possible to obtain data
significantly closer to the transition; this will provide a more stringent test of asymptotic scaling
theory as well as improve our understanding of theoretical predictions of crossover behavior.

Figure 2 illustrates the expected density profiles in a 0.05 cm high cell (present ground-based
MISTE cell height) and a 4 cm high cell (nominal MISTE flight cell height) for various reduced
temperatures with ρavg = ρc.  The calculation uses the restricted cubic model with the latest
parameters for 3He [27].  As the temperature approaches its critical value, only the density at the
middle of the cell remains at ρc.  In 1g the density stratification, [ρ(bottom) - ρ(top)]/ρ(middle)
is approximately 6% in a cell of height 0.05 cm at t = 10-5 while in 3µg (expected Space Station
environment) it is less than 0.7% in a cell of height 4 cm at t = 10-7.

The variation in local density leads to a variation in local susceptibility, defined as χT ≡ ρ2κT,
where κT is the isothermal compressibility.  The susceptibility χT = ρ(∂ρ/∂P)T = -(∂ρ/∂z)T/g,
where the equation (∂P/∂z)T = -ρg is used under the hydrostatic equilibrium condition.  We define
this “vertical” variation as ∆χT = [χT(bottom) – χT(mid)]/χT(mid), which is also a function of t, h,
and g.  The deviation of local density ρ (from ρc) also leads to a decrease in local specific heat
CV(z).  However, the situation is more complicated for the specific heat than for the
susceptibility since the specific heat measurement introduces a temperature change that in turn
can lead to a change in the density stratification.  Figure 3 shows the calculated average specific
heat for the ground-based cell of height 0.05 cm and the proposed flight cell of maximum effective
height 4 cm (see Sec. 3.1) under both 1g and 3µg.  In the presence of a gravitational field, the
specific heat shows an initial increase as the transition is approached and then a severe rounding
as the local specific heat and density stratification alter their respective dominant roles.  The
deviation from the specific heat of a homogeneous fluid is defined as ∆CV = [CV(avg) –
CV(ρc)]/CV(ρc), which is a function of reduced temperature t, cell height h, and gravity g.  For the
present ground-based cell with height of 0.05 cm, the deviation in the measured CV from CV(ρc) is
greater than 1% for reduced temperatures less than tmin = 1.6×10-4 in 1g, while tmin = 7×10-7 for a
4 cm high cell in 3µg.

We see from Fig. 3 that ideally there are about two and a half additional decades in reduced
temperature available for microgravity measurements.  Under the right conditions, the
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gravity–induced ∆CV deviation expected in microgravity could be corrected using theory.  This
correction procedure is usually hampered by the fact that one does not have accurate a priori
knowledge of the asymptotic critical amplitudes needed to precisely define equation-of-state
parameters.  However, an analysis of microgravity measurements could sufficiently validate
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Fig. 2.  Density profiles in 1g and 3µg for a 3He cell of height h = 0.05 cm and 4 cm
respectively at ρavg = ρc.  The z coordinate is in the direction opposite gravity.
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equation-of-state models so that these models could be used to account for at least the initial
gravity corrections.

Moldover et al. [28] have derived gravity-dependent expressions for calculating the reduced
temperature, tmin, along the critical isochore and reduced density, ∆ρmin, along the critical isotherm
below which ∆CV, ∆χT, and [∆ρ(bottom) - ∆ρ(top)]/ ∆ρ(middle) are larger than a specified
percentage.  Their expressions show that tmin and ∆ρmin are functions of the product of (gh).  We
have applied the restricted cubic model with the latest parameters [27] for the 3He critical point
to calculate these deviations directly for various relevant dimensions, gravitational fields, and
reduced temperatures.  The results are shown in Figure 4.  Figure 4a shows measurements along
the critical isochore, and Fig. 4b shows measurements along the critical isotherm.  The dashed
lines separate the regions for deviations smaller than and larger than 1%.  The horizontal lines
correspond to the ground-based cell height, proposed flight cell height, and capacitor density
sensor gap.  The dotted line shows the temperature dependence of the correlation length.  The
height of the experimental cell and sensors are significantly greater than the correlation length to
avoid finite size effects.  Figures 4a and 4b are useful in estimating the expected gravity effect in
proposed MISTE flight cells of various heights.  We list in Table II the numerical values of the
intersections of the dashed lines and relevant experimental dimensions (horizontal lines).  These
values are consistent with the ones calculated using the simple expressions by Moldover et al.
[28].

The results shown in Figs. 2, 3, 4, and in Table II clearly demonstrate the need and the
advantages of a low-gravity environment for performing accurate thermodynamic measurements
along the critical isochore and critical isotherm in the asymptotic region near the critical point.
Straub et al. measured the specific heat CV of SF6 at the critical density during the German
Spacelab Mission D-2 in 1993 [17].  They extended the data range to |t| = 3×10-6 (a one and a half
decade improvement) before gravity effects became important.  The fit of the asymptotic
experimental data over the range of 3×10-6 ≤ |t| ≤ 1.6×10-4 yielded α = α′ = 0.1105 +0.025/–0.027
and A A0 0

− + = 1.919 +0.24/– 0.27, which provided improved agreement with the RG predictions.

Table II.  Calculated tmin (ρρρρ = ρρρρc) and ∆∆∆∆ρρρρmin (T = Tc) for a gravity-induced 1%
variation in various thermodynamic measurements in 3He for h = 0.05 cm
in 1g and h = 4 cm in 3µµµµg.

tmin ∆ρmin

Quantity 1g 3µµµµg 1g 3µµµµg

Specific Heat 1.6×10-4 7.4××××10-7 - -

Susceptibility 2.5×10-4 1.1××××10-6 8.6×10-2 1.3××××10-2

Susceptibility * 5.5×10-5 1.5××××10-8 5.1×10-2 2.7××××10-3

Density 1.8×10-4 1.7××××10-8 7.6×10-2 1.4××××10-2

*  For capacitor density sensor gap d = 5×10-3 cm.
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     Since the critical point can be approached closer under microgravity, a more accurate
determination of the critical parameters Pc, ρc, and Tc is expected.  In most experiments, these
critical parameters are obtained by adjusting them in a least-square fit of one of the measured
thermodynamic parameters.  Gravity considerably reduces the accuracy of this determination and
thus affects the accuracy to which the critical amplitudes can be determined.  For |t| ≥ 10-4, one
must also include the higher-order corrections-to-scaling terms.  This introduces additional
parameters that must be determined from fits to data and again leads to a less precise test of
theory.  By extending the experimental range closer to the transition, the asymptotic nonuniversal
critical amplitudes could be determined with higher accuracy.  Then the measurements farther
from the transition can be analyzed to determine the crossover nonuniversal critical amplitudes
using a reduced number of adjustable parameters.

Figure 5 shows another way to visualize the benefits of performing measurements in
microgravity.  The boundary for the asymptotic region (solid curve) was obtained from the
restricted cubic model [27] assuming that along the critical isochore, higher-order terms in the
susceptibility contribute a 1% correction to the leading asymptotic divergent term at t = 10-4.
The boundary for the earth’s gravity-affected region (dot-dashed curve) was similarly obtained
for a cell height of 0.05 cm assuming a 1% gravity correction at t = 2×10-4 along the critical
isochore.  The dashed curve is the coexistence curve.  We see from Fig. 5 that along the critical
isotherm (t = 0), gravity effects on the ground limit 3He critical point measurements to |∆ρ| ≥
3.8%.  The MISTE flight experiment will be able to perform measurements throughout the
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Fig. 5.  Illustration of the earth’s gravity-affected region, asymptotic region, and
MISTE excluded region (thin, small, horizontal line) in the one-phase region
near the 3He critical point.
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single–phase region except in an experimentally inaccessible region approximated by the small
horizontal line very near the critical point (t ≤ 10-6, ∆ρ ≤ 0.01).  The limiting effect of gravity
shown in this figure clearly demonstrates the advantages of performing measurements in a
microgravity environment.  It is important to note that the “critical slowing down” effect leads to
very long equilibration times as the critical point is approached.  Thus, a long duration space
flight will be needed to perform the wide variety of experiments being proposed.  A detailed
discussion of the expected relaxation times is given in subsection 3.7.

To summarize, the 3He liquid-gas critical point is an ideal system to perform measurements in
microgravity to test the predictions of the RG and the general notion of power laws and scaling.
As a consequence, a microgravity investigation will constitute the most severe test of the validity
of predictions regarding critical point behavior.  Models and insights based on scaling now
pervade physics, and the calculation techniques based on the RG are widespread.  Scaling and RG
theory have conditioned the way in which physicists and other scientists view the world.  It is
important to validate the RG asymptotic predictions as well as predictions for the crossover
region.
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2. EXPERIMENT OBJECTIVES

The main objective of the MISTE flight experiment is to test the scaling predictions of critical
phenomena theories near the liquid-gas critical point by measuring with high precision several
thermodynamic properties in the same experiment.  The specific objectives of the experiment are:

1. Perform measurements of the specific heat at constant volume, CV, in the single-phase
region along isochores (|∆ρ| ≤ 10-1) over the reduced temperature range of 10-6 ≤ t ≤ 10-1.
In the two-phase region, measurements will be performed over the reduced temperature
range of 10-5 ≤ -t ≤ 10-1.  The data along the critical isochore, within the experimentally
determined asymptotic region, will be used to determine the leading critical amplitudes A0

±

and background term Bsh.

2. Perform measurements of the susceptibility, χT, over the reduced temperature ranges
10–6 ≤ t ≤ 10–1 above Tc, and 10-5 ≤ -t ≤ 10-3 below Tc.  The data along the critical isochore
and coexistence curve, within the experimentally determined asymptotic region, will be
used to determine the leading critical amplitudes Γ0

± .  The data along the coexistence curve
will also be used to determine the leading critical amplitude B0 .

3. Perform susceptibility measurements along isotherms over the reduced density range of
10-2 ≤ |∆ρ| ≤ 10-1.  The data along the critical isotherm, within the experimentally
determined asymptotic region, will be used to determine the leading critical amplitude D0 .

4. Test theoretical predictions for the asymptotic scaled equation-of-state from CV, χT, and
PVT measurements obtained throughout the asymptotic critical region.

5. Test theoretical predictions for crossover models using the asymptotic critical amplitudes
determined from this microgravity experiment and data obtained outside the asymptotic
region.

The extent of the asymptotic region along the various critical paths will be experimentally
determined from a χ2, goodness of fit, to the theoretically predicted functional forms.  This
approach will be similar to the one used by Haupt and Straub [17] to analyze the microgravity
measurements of CV near the critical point in SF6.  The experimental data within these
asymptotic regions will initially be used to evaluate the goodness of the data by showing that the
critical exponents α, γ, and δ obtained from a best-fit procedure are consistent with theoretical
scaling predictions.  In the MISTE ground-base program, precision specific heat and
susceptibility measurements will also be performed in the crossover region farther away from the
critical point.  These ground-based data will be combined with the flight data to obtain a better
fundamental understanding of critical behavior throughout the critical region and to permit a
thorough test of theoretical predictions.

The main systematic errors associated with attaining the MISTE objectives are expected to
result from performing measurements along the paths that deviate slightly from the critical paths
(the critical isochore or isotherm).  In the following subsection, we discuss the requirements
needed to minimize these systematic errors.
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2.1 Measurements of the Critical Amplitudes and Exponents

A.  Specific Heat Along Critical Isochore

In the asymptotic regime, the temperature dependence of the specific heat is sensitive to
being off the critical density.  Figure 6a shows the expected specific heat, CV, as a function of
reduced temperature for the near-critical isochores ∆ρ = ρ/ρc - 1 = 5×10-4 and 10-3.  The
deviation of CV from the critical isochore behavior along these paths is shown in Fig. 6b.  The
calculations used the Ginzburg-Landau-Wilson Hamiltonian for the liquid-gas universality class
O(1) [29].  The resultant predictions are consistent with calculations using the restricted cubic
model.  One can obtain an effective critical exponent and critical amplitude from a fit of the
theoretically simulated “data” to the expected critical asymptotic power law expression.  Using
this fitting procedure, the resultant critical exponent α is estimated to shift by -0.14 and -0.55%,
while the critical amplitude A0

+ shifts by 0.15 and 0.59% for isochores that are 0.05 and 0.1%
away from the critical isochore, respectively.  This analysis leads to the requirement that the
critical isochore must be determined to within ~ 0.1% to keep off-criticality errors below 1% in
determining α  and A0

+.  The MISTE requirement for CV is that it must be measured with an
accuracy greater than 1% and the reduced temperature must be measured with a resolution of 10-8

K in a 1 Hz bandwidth for |t| ≥ 10-6.  This level of precision in both heat capacity and reduced
temperature measurements has already been experimentally achieved (see subsections 3.2
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and 3.9).

Besides the CV measurements in the single-phase region, additional CV measurements are
planned in the two-phase region over the reduced temperature range 10-5 < -t < 10-1.  These
additional measurements will be used to determine the critical amplitude A0

−.  The experimentally
obtained critical amplitudes above and below the transition can also be used to test the critical
amplitude ratio A A0 0

+ −  against theory.  

B.  Susceptibility Along Critical Isochore

A similar model calculation was also performed to show the deviation of χT from critical
isochore behavior (see Fig. 7).  Using this fitting procedure, the effective exponent γ is estimated
to shift by -0.11 and -0.44%, while the critical amplitude Γ0

+  shifts 1.3 and 5.5% for isochores
that are 0.05 and 0.1% away from the critical isochore, respectively.  These results for χT indicate
that in order to obtain an experimental accuracy of ≤ 1% in the critical exponent γ, the critical
density must to be determined within ≤ 0.1%, which is the same conclusion arrived at for the
specific heat measurements.  However, being off criticality leads to a larger systematic error in
the susceptibility critical amplitude because of the stronger divergence.

C.  Susceptibility Along Critical Isotherm

In Appendix B, we show that susceptibility measurements along the critical isotherm satisfy
the expression χT ∝  |∆ρ|-(δ - 1).  For calculation purposes, we estimate that the experimentally
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accessible asymptotic range along the critical isotherm will be 10-2 ≤∆ ρ≤  10-1.  Figure 8 shows
the calculated χT as a function of ∆ρ for two near-critical isotherms.  The effective exponent δ is
estimated to shift from the critical isotherm value by -0.06 and -1.2%, while the critical amplitude
D1  shifts by 12 and 31% for near-critical isotherms having reduced temperatures of t = 3×10-7

and 8×10-7, respectively.  The critical amplitude D  can be determined from the expression
D D= δ 1 .  This analysis leads to the requirement that the critical isotherm must be determined to
within a reduced temperature of t ≤ 8×10-7 to minimize the systematic error in δ to ~ 1%.  Again,
because of the strong divergence, one must get very close to the critical temperature to minimize
uncertainties in the critical amplitude.

2.2 Test of the Homogeneity Postulate and Scaled Equation-of-State

The measurements of CV, χT, and PVT in the asymptotic region along families of near-critical
isochore and isotherm trajectories will be plotted as a function of appropriately scaled variables.
The results are expected to lie on universal curves, as a consequence of the scaling configuration
of the equation-of-state (see Appendix A).  The display of the experimental data on universal
curves will permit an investigation of the homogeneity postulate that is the basis for the self-
consistency of the scaling approach.  The precise shape of the various universal curves follow
from the specific form of the equation-of-state.  A more detailed discussion of the various
predicted forms for the equation-of-state is given in Appendix A.
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3. SCIENCE REQUIREMENTS

The overall science requirements are organized into ten major subsections and are discussed
below.  A summary of all the requirements is provided in Tables III and IV.  Since the parameter
values listed in the tables are often the result of optimization studies, a failure to meet any one of
them may be offset to some degree by tightening the requirement in other areas.  Ground-based
studies were performed to demonstrate that the proposed measurement techniques have the
required sensitivity to attain the flight experimental objectives.  Temperature, density, and
pressure sensors were fabricated and tested in an experimental cell designed to minimize gravity
effects on the ground.  These studies have validated the experimental measurement approaches
required to perform specific heat and susceptibility measurements to the precision needed by the
flight experiment.  The science requirements are based on the objective of measuring the specific
heat and susceptibility in the single-phase region to better than 1% resolution down to t = 10-6.

A detailed analysis was performed on various factors influencing the measurement techniques
in a microgravity environment to determine the science requirements for the flight experiment.
These analyses assume that the main sources of possible errors come from (a) systematic errors
due to being slightly off the critical isochore or critical isotherm, previously discussed in Section
2, (b) random errors associated with experimental measurement uncertainties, (c) density
stratification in the cell due to temperature gradients, (d) long relaxation times associated with
density equilibration, (e) cosmic ray heating and (f) heating, and density stratification due to
vibrations.

The main measurement requirements that were determined for the flight experiment from
these analyses are:

(a) The specific heat at constant volume is required to be measured along the critical isochore to
better than 1% resolution over the reduced temperature ranges 10-6 ≤ t ≤ 10-1 in the single-
phase region and 10-5 ≤ -t ≤ 10-1 in the two-phase region.  The critical isochore is required to
be determined to within 0.1%.

(b) The susceptibility is required to be measured to better than 1% resolution over the reduced
temperature range 10-6 ≤ t ≤ 10-1 along the critical isochore and over the reduced temperature
range 10-5 ≤ -t ≤ 10-3 along the coexistence curve.  The critical isochore is required to be
determined to within 0.1%.

(c) The susceptibility is required to be measured along the critical isotherm to better than 1%
resolution over the reduced density range 10-2 ≤ |∆ρ| ≤ 10-1.  The critical isotherm is required
to be determined to within t ≤ 8×10-7.
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Table III.   Summary of MISTE Science Requirements

Parameter Goal Requirement
Temperature Sensors

Resolution in 1 Hz bandwidth at Tc in °K 10-9 10-8

Drift rate (K/s) 3×10-14 10-13

Pressure Sensors
Resolution in 1Hz bandwidth at 1.1 bar 3×10-8 4×10-7

Drift rate (bar/s) 10-13 4×10-12

Range (bar) 3 3
Density Sensor

Resolution in 1Hz bw at ρc (0.014 mole/cc) 10-6 5×10-6

Absolute drift rate (δρ/ρc per second) 3×10-10 10-9

Sample
4He impurity (PPM) 0.01 0.1

Heat capacity measurement
Energy pulse resolution (%) 0.05 0.1
Temperature step resolution at t = 10-6 (%) 0.1 1
Stray heat input (W) 5×10-9 5×10-8

Critical isochore determination (|ρ/ρc – 1|) 5×10-4 10-3

Measurement Range
Single Phase

Inner/Outer limit (t = T/Tc – 1) 10-7 < t < 10-1 10-6 < t < 10-1

Two Phase
Inner/Outer limit (t = T/Tc – 1) 5×10-6 < |t| < 1×10-1 10-5 < |t| < 10-1

Susceptibility Measurement
Isochore Measurement Range

Outer limit (T/Tc – 1) 10-1 10-1

Inner limit (T/Tc – 1) 6×10-7 10-6

Critical isochore determination (|ρ/ρc – 1|) 5×10-4 10-3

Isotherm Measurement Range

Outer limit |ρ/ρc – 1| 2×10-1 10-1

Inner limit |ρ/ρc – 1| 7×10-3 10-2

Critical isotherm determination (T/Tc – 1) 3×10-7 8×10-7
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Table IV.   Summary of MISTE Flight Environmental Requirements

Parameter Goal Requirement
Acceleration Environment

DC ≤ 3 µg ≤ 5 µg

The total integrated acceleration spectrum over
the range 10-3 Hz < frequency < 500 Hz

≤ 750 µg rms ≤ 1500 µg rms

Charged Particle Environment
Charged-Particle heating rate (pW/gram copper)

Inside Equatorial Band (|latitude| < 30°) < 0.5 0.5 − 3.0

Outside Equatorial Band (|latitude| > 30°) < 5 < 15

3.1 Experimental Cell

Figure 9a shows a schematic of the ground-based MISTE experimental cell.  This cell,
designed to measure specific heat CV and susceptibility χT, was made of oxygen-free high-
conductivity (OFHC) copper.  The sample space had a flat disk shape with a height of 0.05 cm
and a diameter of 11.2 cm.  The small cell height minimized the effect of gravity on the ground.
The cell was thermally isolated from a surrounding shield stage with an effective thermal
resistance of R ~ 104 K/W.  A high-resolution GdCl3 magnetic susceptibility thermometer
(δT/Tc = 3×10-10 resolution) measured the cell temperature.  A heater, wrapped on a copper rod,
was attached to the cell.  A heat pulse was generated from this heater for the specific heat
measurements.  In the case of the susceptibility measurements, a feedback loop was used to
regulate the cell temperature within several nK.  A low-temperature manual valve was attached
directly to the top of the cell.  The fill line behind the valve was pumped out after the cell was
filled with high-purity 3He.  A Straty-Adams capacitive type gauge (δP/Pc = 4×10-7 resolution)
was positioned at the center of the cell to measure the pressure in the sample.  One plate of this
capacitive gauge was a flexible diaphragm that sensed pressure changes in the sample.  A
capacitor for measuring density (δρ/ρc = 3×10-6 resolution), with essentially rigid plates having a
~ 50 µm gap, was also located in the middle of the fluid layer.  This capacitor determined the
sample density using the Clausius-Mossotti equation and also measured the susceptibility very
near the critical point using an electrostrictive technique.  The cell also contained three leveling
capacitors (not shown in Fig. 9a) that will be discussed in subsection 3.6.  An advantage of this
cell design is the ability to perform continuous in-situ PVT measurements in addition to the
specific heat and susceptibility measurements.

The MISTE flight experimental cell, shown in Fig. 9b, will have the same basic features as the
cylindrical ground-based cell; however, the geometry will be designed to minimize the effects of
microgravity and thermal equilibration time.  The candidate flight cell design is a cylindrical cell
having dimensions of ~ 5 cm in diameter by 4 cm in height that will provide ~ 8 times the sample
mass of the present ground-based cell to increase the accuracy of the heat capacity
measurements.  The flight cell will have ~ 50 plates (0.5 mm thick) with holes in them and 50
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spacers (0.5 mm) both made of thermally conducting material and symmetrically situated in the
cell.  The fluid layers sandwiched within the plates will be equal to or less than 0.05 cm so that
the effective thermal time constant will be comparable to that obtained in the ground-based cell.
The flight cell will use two sets of sensors similar to the ones described above (see Appendix C
for a discussion of the two density sensors).  We will also evaluate using plates and spacers that
are ~ 0.25 mm thick to further reduce the thermal time constant.
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Fig. 9b.  Schematic of the flight experimental cell.
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A.  Gravity Effects on International Space Station

The gravity effect is still an important factor in designing the measurement cell for the flight
experiment.  The orientation of the cell relative to the net acceleration vector can have significant
consequences on the performance of this experiment.  The experimental probe will be positioned
along the axis of the Low Temperature Microgravity Physics Facility (LTMPF).  The LTMPF
in turn will be attached to one of the ports of the Japanese Experiment Module-Exposed Facility
(JEM-EF) located on the International Space Station (ISS).  At this time, the LTMPF M1
facility is scheduled to be located in port 2 of the JEM-EF.  An analysis of the expected gravity
vector has been performed for all of the potentially available ports on the JEM-EF.  It is
expected that during the LTMPF M1 flight, the magnitude of the net acceleration vector for port
2 will be ~ 2.9 µg with a stability of ~ 0.1 µg.  Assuming the axis of the LTMPF is along the port
2 axis, the net acceleration vector will point in a direction that is ≈ 45° with respect to the
MISTE probe axis and will have a stability of ~ 2.4° during each orbit.  These results are
essentially valid for all the available JEM-EF ports.  This information is encouraging in that the
acceleration magnitude and direction will be relatively constant over a time scale of many days.  

Assuming the orientation of the net acceleration vector remains approximately constant
during the LTMPF mission, the MISTE cell axis should be oriented at a fixed angle relative to the
probe axis so that the cell axis is along the net acceleration vector.  The motivation for considering
the candidate flight cell geometry is the possibility that the actual location of the LTMPF might
change.  An oriented flight cell with a height of ~ 4 cm will have a 1% microgravity effect on the
specific heat in a 3 µg environment at a reduced temperature of t ~ 7×10-7 (see Fig. 4a).  

3.2 Temperature Sensor

One of the flight experimental objectives will be to measure the heat capacity along the critical
isochore over the reduced temperature range of 10-6 ≤ t ≤ 10-1.  When using the pulse technique
for measuring CV, the temperature step should be small compared with the reduced temperature
to minimize nonlinear effects.  To achieve a 1% resolution in the temperature at t ~ 10-6, we
require the temperature resolution to be 10-8 K, while the MISTE experimental goal is to achieve
a resolution of 10-9 K in temperature in a 1 Hz bandwidth.  Since measurements of CV and χT will
be taken near the critical point over a period of several months, we define the requirement for the
drift rate of the thermometer to be ≤ 10-13 K/s.

Previous flight experiments (LPE and CHeX) have successfully used a magnetic
susceptibility thermometer based on a SQUID magnetometer.  This type of high-resolution
thermometer (HRT) showed a resolution of better than a nK (10-9 K) at the lambda point in
microgravity.  A miniaturized HRT, shown schematically in Fig. 10, has been developed to work
at the 3He critical point [30].  The active element of the thermometer is a GdCl3 paramagnetic salt
with a transition temperature of 2.2 K.  The salt is thermally anchored to an OFHC copper body
that is attached to the experimental cell.  The signal from a superconducting pickup coil is fed to
the SQUID magnetometer and a superconducting magnetic shield surrounds the thermometer.  A
pair of SmCo magnets generates a field strength of approximately 200 Oe at the salt that
optimizes the thermometer drift and sensitivity performance.  Figure 11 shows the resolution
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obtained for a GdCl3 thermometer on the shield and sample stages in the ground-based system.
The required temperature resolution was also demonstrated in CV measurements using the heat
pulse technique (see subsection 3.9).  An absolute drift measurement test was performed using a
similar HRT thermometer.  This test showed that the required drift rate was met.

A commercially available germanium resistance thermometer (GRT) measured with a
resistance bridge system can resolve ≈ 10-7 K using a power dissipation of 0.03 to 0.3µW.  We
plan to use a GRT for performing CV measurements with at least a 1% precision for t > 10-4.

3.3 Density Sensor

The fluid density will be determined by measuring the 3He dielectric constant using a
capacitor.  The measured dielectric constant is then converted to density via the Clausius-
Mossotti (C-M) equation.1  The critical density needs to be determined within 0.1% in order to
minimize systematic errors in the asymptotic critical exponents and critical amplitudes.  The
required density resolution is δρ/ρ = 10-5 to resolve the difference between two densities by
0.1%.  However, the required density resolution is driven by the electrostriction technique.  For
this technique, a density resolution of δρ/ρ = 5×10–6 is required to attain a 1% uncertainty in the
density difference of δρ/ρ = 5×10–4 that is needed for a 1% susceptibility measurement (see
Appendix B).  Furthermore, this required resolution must be met under the condition that the
excitation voltage on the capacitor be less than 1V rms in order to reduce the systematic error

                                                
1 There are a few important issues regarding the use of the C-M relationship near the critical point experiments.  The
fundamental assumption behind the C-M equation is that the polarizability of the molecules in the fluid is
unchanged by neighboring molecules.  This is certainly true far away from the critical point where fluctuation effects
are negligible.  However, one could expect nontrivial correction terms to appear near the critical point where the
effects of density fluctuations are nonnegligible.  These effects have been studied both experimentally and
theoretically near liquid-gas critical point of 3He [31].  From a practical point of view the C-M relation has been
found to be valid even in the critical region.
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caused by the nonlinear effect in the χT measurement.  Since, in the electrostrictive technique, a
typical density difference (δρ/ρ = 5×10-4) will be established over a time period comparable to
the fluid relaxation time (~ 1 hour close to the transition), we define the requirement for the
capacitor drift rate (δρ/ρ per second) to be ≤ 10-9.  The drift rate of the present capacitor has
been verified to be ~ 1.2×10-10, which meets the flight requirement.

The capacitor used in the present ground-based experiment had one electrode made of a BeCu
disk and another one made of a copper-coated sapphire disk.  The sapphire disk was bonded to
the cell boundary to quickly conduct away any heat generated in the capacitor gap.  The BeCu
disk was suspended from the sapphire disk and immersed in 3He fluid.  This arrangement
minimized any pressure effect on the capacitance measurement.  The capacitor gap was 50 µm.
Another nearly identical capacitor was mounted outside the cell in vacuum as a reference.  A
seven-digit ratio transformer, lock-in amplifier and ×10 preamplifier formed the capacitance
bridge.  For the ground-based measurements, the bridge was operated at ~ 2700 Hz using a 14.7 V
excitation voltage across the ratio transformer and a lock-in time constant of 0.3 s.  The offset
voltage from the lock-in was monitored by a computer and used to interpolate the capacitance
ratio beyond the seventh digit.  We can resolve δρ/ρ ~ 3×10-6 with this ratio transformer-based
capacitance system.  For the flight system, further improvements are planned to achieve the same
sensitivity using a minimum AC excitation voltage of ~ 1V.  A design similar to the binary ratio
transformer successfully developed for the Critical Viscosity of Xenon (CVX) experiment [32] is
being considered.  Two capacitive density sensors with different gap dimensions will be used for
the flight experiment in order to correct for surface interaction effects (see Appendix C).

3.4 Pressure Sensor

A Straty-Adams type capacitive pressure gauge [33] has been fabricated to measure the in-
situ sample pressure in the ground-based cell.  The gauge used a small portion of the cell
boundary as a flexible diaphragm that moved in response to a pressure change.  A plate was
attached to the diaphragm, and a capacitor was formed using a second plate held in close
proximity.  The ground-based pressure gauge has a sensitivity of δP/P ≈ 4×10-7.  This pressure
resolution can be further improved by reducing the pressure sensor diaphragm thickness and the
capacitor gap.  The high-precision pressure gauge will mainly be used to measure PVT isotherms,
from which the susceptibility and critical density can be determined.  These isotherm
measurements take several hours requiring a drift rate for the pressure gauge  ~ 4×10-12 bar/s that
has been demonstrated experimentally.

A pressure resolution of δP/P ≤ 10-10 would be needed to determine the susceptibility to 1%
at t ≤ 10-6 from a PVT measurement (see Fig. B2 in Appendix B).  This sensitivity is difficult to
achieve using a conventional pressure sensor.  The ultimate factor limiting the pressure resolution
comes from the coupling of a pressure fluctuation to a temperature fluctuation in a constant
volume experiment.  The requirement for a temperature resolution of δT/T = 10-8 limits the
requirement for the pressure resolution to be 3×10-8.  Either one of the two flight high–precision
pressure gauges will be used to calibrate the density sensors used for the electrostrictive
technique in the region where the two techniques overlap farther away from the critical point.
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A commercially available self-balancing capacitor bridge was used to measure the pressure
sensor in the ground-based studies.  However, for flight we plan to use a ratio transformer-based
capacitance bridge identical to the one planned for the density measurements.  

3.5 In-Situ Fluid Transfer System

The flight experiment will require a fluid transfer system to change the density in the cell.
This system must allow the density to be changed between fixed values for measurements along
isochores, and it must also be capable of slowly ramping the density for isotherm measurements.
Initial ground experiments used a stepper-motor actuated piston at room temperature to perform
these tasks.  Such a system is not ideal for the flight experiment, so an in-situ sample transfer
system based on a charcoal sorption pump was devised.  A schematic diagram of the proposed
flight system is shown in Fig. 12.  This system has a low-temperature valve that is closed during
constant density measurements or opened during density sweeps or other adjustments.  With the
valve open, the amount of helium in the cell can be controlled over a wide range (± 10%) by
heating the sorption pump to a temperature of about 30K.  The regulated heat sink protects the
carefully regulated lower stages from the hot gas that flows from the sorption pump.  This heat
sink and another on a small valve stage are held above the cell temperature to avoid condensation
and phase boundaries in the transfer lines.  A prototype system of this kind was used
extensively in ground-based measurements and has performed well.
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Fig. 12.  Schematic of in-situ fluid transfer system.
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The proposed flight in-situ system has one valve that needs to be remotely controllable on-
orbit.  This is the valve that isolates the cell from the sorption system for constant-volume
specific heat and electrostriction measurements.  It will be opened and closed at least 25 times
during the flight.  Our baseline plan is to use a valve being developed in cooperation with Mission
Research Corporation (MRC), which is a smaller version of an MRC valve, planned for use in
the LTMPF.  An alternative choice is a pressure-actuated valve of the previously flown Lambda
Point Experiment type.  The valve leak rate requirement is < 10-6 std-cc helium/s.  This leak rate
is needed to maintain the density constant to 0.02% over a 1 month period, which is the
maximum expected on-orbit time for runs at a given fixed density.  This requirement can be
relaxed somewhat because the sample density will be continuously monitored, and re-filling the
cell is also possible.  The requirement that the preflight filling density not change by more than
0.1% over a 6 month launch campaign gives about the same leak rate requirement.  The constant
volume measurements with the most restrictive density requirements will be performed at the
beginning of the data-taking period to minimize any adverse effects associated with a possible
degradation of valve performance.

The pressure to actuate the valve will be provided by a hot-volume system filled with 3He.
The use of 3He prevents superfluid thermal shorts to colder parts of the LTMPF cryoprobe.  A
similar system was previously used to actuate a low-temperature valve [34], and as a backup
procedure the gas supply available on the LTMPF facility could be used for the valve actuation.
Another valve may also be needed to isolate the low-temperature sample handling system from
the fill line to room temperature.  This valve would also be pressure actuated, but it would only
need to be actuated a few times on the ground for initial sample filling.  The leak rate
requirements on this valve are much less restrictive than for the cell valve since the isolation valve
is only used to protect the system from fluctuations caused by bath temperature variations or
other disturbances.  This valve is not presently used in ground experiments, and the actual need
for it in the flight experiment is being evaluated.  
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3.6 Determination of Critical Density and Temperature

A precise determination of the critical density and temperature is crucial to the success of this
experiment.  To obtain the stated objectives, the critical density must be determined to within
0.1% and the critical temperature to within t = 8×10-7. Measurements along several near-critical
isochores and isotherms are planned for the MISTE flight experiment to accurately determine the
critical parameters.  An additional factor that is important for ground-based measurements is the
need to make sure the cell is level to minimize the effective vertical height.  A leveling concept
was used that matched the cell angle to that of a free, horizontal, liquid surface.  There are three
equally spaced leveling capacitors that have their electrodes flush with the top and bottom
surfaces of the cell.  After the cell was initially filled to approximately the critical density, it was
cooled into the two-phase region to t ~ -10-3.  The capacitors were then calibrated in the liquid
and gas phases by tilting the dewar support.  With this calibration, the capacitors could be used
to determine the liquid level with respect to the cell bottom.  Leveling was accomplished by again
slightly tilting the dewar support to make the liquid levels equal.  In practice, this leveling method
can resolve changes in angle of less than a micron in height across the width of the cell.  However,
due to slight geometric imperfections in the cell, we only expect the absolute leveling to be
accurate to about 25 µm (~ 0.01°) over the cell diameter.  Variations in the cell level over time due
to helium bath level changes and other effects is less than 15 µm.

In the present ground-based studies, a near-critical density was experimentally obtained by
measuring the pressure-density curve for an isotherm slightly above the critical isotherm and just
outside the gravity-affected region.  This was achieved by initially overfilling the cell and then
regulating the cell slightly above the critical temperature.  Fluid was then slowly leaked out of the
cell while maintaining a constant temperature.  Figure 13 is an example of the resultant pressure-
density curve obtained for an isotherm at a reduced temperature of 6×10-4.  This curve has an
inflection point that is associated with the inverse of the maximum of the susceptibility,
χT = ρ2κT = ρ(∂ρ/∂P)T.  The maximum of χT versus ρ defines the critical density for isotherms
close to the critical point.  This approach is particularly valid for 3He, which has an
extraordinarily symmetric coexistence curve with the smallest rectilinear diameter among all the
simple fluids [18].  The raw data were smoothed and the smoothed data were used to calculate
the experimental χT.  The calculated χT derived from the slope of the P-ρ curve near the inflection
point is shown in the insert in Fig. 13.  The density corresponding to the maximum in χT was
taken as ρc and was determined to within 0.1%, which is the requirement for performing specific
heat and susceptibility measurements along the critical isochore.  Once this critical density was
determined, the experimental cell was refilled again and sealed at the capacitance value
corresponding to ρc.  

Once the critical isochore is determined, accurate measurements of the specific heat and
susceptibility can be made along this path.  An initial estimate of the critical temperature can be
made by locating the specific heat peak from measurements in both the single and two-phase
regions.  In this approach, the specific heat is measured during a slow cooling drift run in which
successive heat pulses are applied.  The critical temperature will be determined from the abrupt
increase in the relaxation time of pulsed CV measurements as the fluid crosses from the single- to
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two-phase region (see Fig. 17 and Ref. [16]).  In the single-phase region, a temperature gradient is
established almost instantly after a heat pulse due to the strong piston effect (see subsection 3.7).
In the two-phase region, the relaxation time in the asymptotic region is expected to divergence as
~ t-γ/2 [27].  The large discontinuity in the measurable relaxation time should be easily observed
[16].  On the ground, these quantities will experience significant rounding near the transition due
to a gravity-induced density stratification starting at t ≈ 10-4 (see Figs. 3 and 4 and Table II).
However, in a microgravity environment we expect a 1% CV rounding at t ~ 7×10-7 for the
proposed flight cell of maximum height 4 cm.

A second method for determining Tc comes from a slow cooling drift run for measuring the
susceptibillity using the electrostriction approach.  By performing these measurements with a
small, constant DC bias, one continuously obtains a characteristic signature of the susceptibility
as the system crosses over into the two-phase region.  The critical temperature is related to the
peak in the data.  This susceptibility approach should be more sensitive than the specific
approach because of the stronger divergence in the susceptibility.  A consistency check on the
determination of Tc can be made by performing both the specific heat and susceptibility
measurements during the same cooling drift run.  A final consistency check will come from the
value of Tc determined from fitting the measured CV and χT along the critical isochore.
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A.  4He Impurity in 3He Sample

Since the liquid-gas critical temperature of 3He is very low (3.3 K), the only nonfreezing
impurity at this temperature is 4He.  Horst Meyer’s group at Duke University has studied the
thermodynamic properties of 3He-4He mixtures near the liquid-gas critical point over a number of
years.  A review is given in Ref. [36].  In the presence of a 4He impurity in a 3He sample, the
divergence of the susceptibility will be the same as that for pure 3He along a constant
concentration susceptibility path that is not the same as an isochore path.  Since the MISTE
flight experiment will follow the paths of the critical isochore and isotherm to approach the
critical point, a crossover to a mixture behavior in the compressibility measurement is of concern.
The crossover temperature is approximately ts1 ≈ [A0X(1 - X)]1/γ, where X is the molar
concentration of 4He in 3He.  For t >> ts1, the susceptibility divergence is essentially that of a
pure fluid, and the systematic error caused by a 4He impurity in determining γ or Γ0

+  is negligible.
Using the parameters of the 3He-4He mixture provided in Ref. [36], one obtains A0 ≈ 0.07.  The
present MISTE experiment uses commercially available 3He gas containing less than 1 ppm of
4He, which implies ts1 ≤ 9×10-7.  In the MISTE flight experiment, the susceptibility will be
measured over 10-6 ≤ t ≤ 10-1.  Therefore we define the requirement for 4He impurity in 3He
sample to be less than 0.1 ppm.  A multiple distillation process can easily be performed to
achieve this required purification.  For specific heat at constant volume, a similar crossover to a
mixture behavior occurs at a much smaller reduced temperature; hence, it is not of concern when
the volume is constant.

Another effect of the 4He impurity in 3He sample is to shift the critical temperature upward
by approximately 1 µK per ppm (4He) from the value of a pure 3He sample [26].  Since only the
relative distance to the critical temperature needs to be measured precisely, the small shift in Tc

due to a 4He impurity is not of concern as long as the impurity remains constant during the flight
experiment.

3.7 Equilibrium Time Constants and Density Stratification

The CV and χT measurements are performed in the presence of disturbances (such as a heat
pulse or pressure change) applied to the 3He fluid system.  These disturbances produce
temperature and density inhomogeneities in the system.  The equilibration processes associated
with the way these inhomogeneities decay to a steady-state condition near a liquid-gas critical
point have been studied extensively [27,35].

The MISTE experiment will be performed in a constant-volume cell.  In this case there are
two time scales that characterize the equilibration process in the single-phase region (T > Tc).
One of the time constants is the “piston time,” and it is expressed as [37]

τ 1

2

1
1=

−




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h

C C DP V T/
, (22)

where h is the cell height, DT is the thermal diffusivity, and CP and CV are specific heats of
constant pressure and constant volume.  At a small reduced temperature near the critical point,
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the density change within the surface boundary layer can be very sizable just after a temperature
disturbance at the boundary.  For this case, the piston time scale is modified and has the form

τ 1
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D
tV

P b T b

  at small , (23)

where the values of CP and DT are calculated at the boundary and CV is spatially averaged.  The
second time scale is the diffusive relaxation time,

τ
π

= 





h

DT2
12

. (24)

From time τ1 to τ, the temperature inhomogeneity equilibrates in a power-law fashion.  After
time τ, the remaining temperature inhomogeneity (usually undetectable) and sizable density
inhomogeniety (the result of the divergent thermal expansion coefficient) relax diffusively.

Figure 14 shows the expected temperature-dependent behavior in microgravity for the two
time scales.  The solid line corresponds to the diffusive relaxation time that diverges as the critical
point is approached.  The piston time scale, given by the dashed line, approaches zero as the
critical point is approached.  In a real fluid system very near the critical point, τ1 is expected to
be larger than the values shown in Fig. 14 due to nonlinear effects.  We have performed model
calculations to determine the optimum drift rate to limit the density inhomogeneity to < 0.1%
from its mean throughout the cell.  For the ground-based cell of 0.05 cm height, the optimum drift
rate is ≤ 3×10-4 K/hr.  Since the flight cell will have the same fluid height between plates we
expect the same optimum drift will be valid.

In the case of isothermal susceptibility measurements, the cell will be controlled at a higher
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temperature than the surrounding shield stage.  The cell heater will be wound around the thermal
contacts connecting the cell to the shield in such a way as to minimize a temperature gradient
within the cell wall.  On the other hand, for the heat capacity measurement using a cooling-drift
technique, heat must be removed from the cell as its temperature free-falls towards the shield
temperature.  This heat flow could produce a temperature gradient in the cell wall since its
thermal conductivity is not infinitely large.  Such a temperature gradient in the cell wall between
the closest and furthermost points to the thermal contacts would induce a corresponding density
inhomogeneity in the sample both in the single and two-phase regions.  We are addressing this
issue both theoretically and experimentally.  A detailed 3-D finite-element thermal model study
of the behavior of the proposed flight cell in the single-phase is now in progress.  For this model
study, we assume an OFHC copper thermal conductivity of 6 W/cm K and a maximum heat
input of 1 µW that is an order of magnitude larger than for CV pulse and χT measurements.  This
model should provide us with the spatial and temporal profiles of the temperature, density, and
pressure within the cell for various initial conditions.

In the two-phase region, the time constant associated with a change in temperature will be
much longer due to mass transfer (release of latent heat) between phases at the phase boundary.
It is very difficult to model this two-phase equilibrium process.  However, insight into this time
constant issue will be obtained by experimentally measuring the equilibrium time constant and
temperature gradient in a prototype flight cell with its copper plates both along and normal to the
gravitational field.  The shape of the phase boundary is significantly different for these two
orientations. The results from the modeling study and ground-based measurements will support
the determination of the design and ultimate orientation of the flight cell.

3.8 Charged-Particle and Vibration Environment

A.  Charged-Particle Environment

At this time, reliable data on the expected radiation environment on the ISS are not available.
However, the bulk heating effect by charged particle fluxes through a part of the ISS orbit has
been recently estimated [38].  The model calculation used the LPE (Lambda Point Experiment)
heating data for comparison and calibration.  Away from the South Atlantic Anomaly (SAA) the
heating is mainly due to galactic cosmic rays (GCR).  The model can estimate heating effects due
to the GCR within 50% in an equatorial band covering about 60% of the area swept by the
station.  Away from the equatorial band, the estimation of GCR is less accurate.  Due to the lack
of data at this time, it is not trivial to predict accurately the cosmic ray heating throughout the
entire ISS orbit.  However, the model can still conservatively estimate the heating effect when the
orbit is away from the SAA and still within an equatorial band.  Initial estimates are for a 15 - 20
minutes SAA duration in these bands that occurs twice during a given orbit (~ 90 min).  The
heating effect within an equatorial band is effectively independent of latitude.  The GCR level
within a band of -20° < latitude < 20° is less than 0.5 pW/gm (Cu).  Outside this band (higher
latitude), the heating level varies up to ~ 15 pW/gm depending on the latitude.  

The model estimates less than ~ 0.5 pW/gm (Cu) from GCR within an equatorial band at the
solar minimum year (2007, altitude ~ 370 km).  It is assumed that this heating rate leads to
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~ 1.5 nW of heat leak to a 3 kg copper sample cell.  This heating effect will be negligible during
isothermal experiments (PVT or electrostriction technique) that are planned for measuring the
susceptibility along various critical paths.  However, if the heat capacity is measured using a
cooling drift technique, the heating due to the cosmic ray will impact the measurement to varying
degrees depending on the position of the orbit.  Model calculations indicate that a cooling drift
rate of approximately -0.3 mK/hr is required over the range 10-6 < |t| < 10-3 to maintain an
accumulated density gradient of less than 0.1% within an internal cell having 0.05 cm plate
spacing.  For this cooling rate, approximately 1.5 µW would be extracted from the sample cell
(~ 0.5 mole of sample) for approximately 3 hours to finish a drift heat capacity run.  Within an
equatorial band, this cooling rate is well above the cosmic ray heating.  Even outside these bands
the effect will be negligible, and this small effect could be removed in the analysis by using
charged particle monitoring data.  However, inside the SAA, the cosmic ray heating effect will not
be negligible for this technique.  The expected high heating rate in the SAA will limit the available
time of the drift heat capacity measurement during the orbit and will require a well-defined data
acquisition scenario.

In the earlier CHeX flight experiment, the effect of the cosmic ray heating was shown to be
minimal when the adiabatic heat pulse technique was used to measure the specific heat.  This
experiment required more sensitive heat control than will be needed by MISTE.  Most of the
flight heat capacity measurements will be performed within 10-6 < |t| < 10-1 using a heat pulse
technique.  Inside an equatorial band the cosmic ray heating effect can be roughly estimated.  A
total of 1.8 µJ of energy will be deposited into the copper sample cell if we assume a 20 minute
duration in this band with 1.5 nW of heating.  This will heat up the sample (0.5 mole) by about
6×10-8 K during the experimental measurements.  This heating rate is negligible for the heat
capacity data between 10-6 < |t| < 10-1.  It is important to note that both adiabatic pulse and
cooling drift measurements further away from the asymptotic region could be performed even
within the SAA.  For example, the 3 kg copper sample cell would be exposed to ~ 1.5 µW
assuming the heating rate in the SAA is ~ 500 pW/gm.  This effect would be negligible for heat
capacity measurements outside the asymptotic critical region (t > 10-4).  

So far we have only estimated the uniform heating effect of cosmic rays on the sample cell.  It
is also important to estimate the local heating effect in the PVT sensors on the sample cell.  This
local heating can produce a nonisothermal boundary condition that could lead to a density
gradient in the sample.  Let us first consider a high-resolution thermometer using a GdCl3 salt
(~ 0.3 gm) and having ~ 9 K/W thermal link to the cell.  These conditions would only produce ~ 1
nK offset at the maximum heating rate in the SAA.  Thus, in this case there would be very little
thermal gradient along the entire cell and a negligible systematic error in the temperature
measurement.  The pressure and density sensors used in present experiments mainly consists of
materials with relatively high thermal conductivity (mostly BeCu, Cu, and sapphire); these
materials should not contribute to a thermal gradient problem.  For high-precision measurements
in the equatorial band we must be able to recover quickly from the SAA heating effects during an
orbit.  The calculations above predict a 1.5 µW heating effect when passing through the SAA.
This level of heating can easily be controlled to maintain the MISTE cell at the temperatures
required for performing measurements at the conclusion of an SAA encounter.  
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The low-earth-orbit neutron environment and its effect on 3He have also been studied [38].
The preliminary results show that the neutron heating of the sample in the proposed MISTE
flight cell geometry is less than 0.1 nK in the SAA.  Although the heating effect is negligible, the
ionization caused by the products of the neutron or charged particle-induced nuclear reaction may
increase the electrical conductivity of a 3He sample.  This may degrade the performance of
density measurements where an electric field is present in the capacitor sensor.  A recent flight
experiment using xenon near the critical point [32] showed a slight degradation of the signal due
to this effect in SAA.  Unlike the heating effect due to neutrons, which leads to a systematic
density inhomogeneity, this ionization effect can be minimized by data averaging.

Another possible radiation effect is related to the MISTE density sensor.  During
electrostriction measurements the density sensor capacitor contains 3He subjected to a large
electric field.  The field is 100 times less than the dielectric breakdown strength of the helium
during ground experiments, however the charged particles in the Space Station environment may
considerably reduce the breakdown threshold.  The MISTE team is collaborating with JPL
radiation effects experts to evaluate this possible problem and to set up an experimental ground-
based test to determine the magnitude of this effect.

The analysis above is very conservative.  The actual situation on the ISS flight is expected to
be much less restrictive.  A more precise data acquisition flight scenario will be developed as
more accurate information is obtained on the expected radiation environment on the ISS.  If
additional information is not available before the flight, initial data acquisition runs will be
performed early in the mission to directly evaluate the cosmic ray heating effect on
thermodynamic measurements.  This information will then be used to adjust the mission data
acquisition scenario.
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B.  Vibration Environment

The Boeing Corporation has performed calculations of the vibration environment for various
locations on the ISS.  The LTMPF will be mounted on the Japanese Experimental Module
(JEM).  Estimates of the vibration levels expected for the LTMPF on the JEM are given in the
LTMPF Science Requirements Envelope Document (SRED) [39].  In addition, we have
performed a detailed analysis of the vibration effects on the measurement of the specific heat and
susceptibility near a liquid-gas critical point [40].  There are several ways in which vibrations can
be felt in the MISTE experimental configuration; the following text is a summary of the analysis
that has been performed for the most significant of the known influences from the vibration
spectrum.  The analysis has been applied to the MISTE ground-based cell of height L = 0.05 cm
and diameter D = 11.2 cm.  Assuming that the flight cell will have plates that are separated by a
gap ≤ L and a diameter ≤ D, the analytical results should correspond to a worst-case scenario for
the flight experiment.

Vibration Effects Analysis

Random accelerations lead to a variety of effects.  In this analysis, we consider the
consequences of random accelerations on (1) density fluctuations that result from random
accelerations and the temperature variations induced by these density fluctuations, and (2) the
temperature drift due to vibration-induced viscous heating.  Before consideration of these various
effects, we review a key property of the response of the experimental system to the vibrations to
which it will be subjected in a microgravity environment.

AC Versus DC Response

AC accelerations give rise to transient effective gravitational forces that can be much larger in
magnitude than the constant microgravity environment.  These AC accelerations are not
important for the MISTE experiment because of the way in which temperature and pressure
differentials are equilibrated.  In a constant-volume cell, the response to AC perturbations is
adiabatic, rather than isothermal, if the frequency of the perturbations is sufficiently high.  This
fact has important effects on the magnitude of the response.  For example, the adiabatic
compressibility has the temperature dependence t−α , while the isothermal compressibility goes
as t−γ .  The critical exponent α  is a little greater than 0.1, while γ ≈ 1.24.  Thus the isothermal
compressibility is considerably greater than the adiabatic version of this response at small
reduced temperatures.

The key to the response of the system lies in the crossover frequency, separating adiabatic
from isothermal response.  This frequency is governed by the diffusive process by which the
temperature of the system is equilibrated.  The formula for the crossover angular frequency, ωc,
is

ωc =
1

τ c

=
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L / π( )2
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 
 , (25)
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where L corresponds to the smallest cylindrical cell dimension.  The thermal diffusion constant,
DT for 3He is given by

D tT = × −3 99 10 4 0 75. .  cm / s2 . (26)

If we assume L = 5×10-2 cm, then

τ c t= × −0 64 0 75. .  s . (27)

Figure 15 shows a log-log plot of the characteristic crossover angular frequency as a function
of the reduced temperature, t.  Note that at t = 10-6, the crossover between AC and DC response
is at about ω = 10-4 Hz.  This is considerably below the lower threshold of vibrations that one
expects to encounter on the ISS.  Recall that a frequency of 10-4 Hz corresponds to a period of
about three hours.

Fluctuations in the Density Resulting from Random Accelerations

Vibrations lead to fluctuations in the density of the 3He sample.  Because the compressibility
of this system diverges at the critical point, this effect must be taken into account.  After careful
analysis [40], one finds for the fractional deviation in the density of the system
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where ρc is the critical density, Cs is the adiabatic sound velocity, and a(ω)a(-ω) is the mean
square acceleration per unit angular frequency.  Because of the smallness of the critical exponent
α, the fractional rms fluctuation in the density is very insensitive to the reduced temperature.

For example, at t = 10-7, δρrms/ρc ~ 6 5 10 8. × ( ) −( )−

−∞

∞

∫ a a dω ω ω.  If the fractional change in the

density is to be less than one part in 104, then we have the following restriction on the integrated
spectrum of vibrations:

                    a a dω ω ω( ) −( ) < ×
−∞

∞

∫ 1 54 103.  cm / s2. (29)

Given what will be established about the expected spectrum of random accelerations in the
experimental module, we expect this restriction to lie well below the requirements on the
LTMPF.  This effect is negligible for the proposed flight measurements.

Variations in the Temperature Induced by Density Fluctuations

The temperature of the system is also affected by density fluctuations induced by random
accelerations of the 3He sample.  The relationship between density and temperature changes
arises from the fact that the response of the system to random effective g-forces is fundamentally
adiabatic.  We start with the statement that there is no change in entropy associated with
fluctuations in the temperature and volume of a system in the canonical ensemble
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This allows us to associate a linear temperature change with small deviations in the volume of the
system:

∆T =
T

∂P
∂T

ρ 2cV

∆ρ . (31)

Using Eq. (28) for density fluctuations induced by random accelerations, we end up with the
following expression for the rms deviation of the temperature from its average value due to the
adiabatic response of the system to AC-effective g-forces:

∆ ∆T T a a drms = = × ( ) −( )− ∫2 71 27 10. ω ω ω, (32)

where the acceleration is measured in cm/s2.  Suppose we require that the rms temperature
fluctuation be less than five parts in 108, which represents an AC deviation in temperatures equal
to the expected experimental error.  Then, we must have
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a a dω ω ω( ) −( ) ≤∫ 0 155. /  cm s2 4 . (33)

According to this inequality, the total rms value of the acceleration must be less than
0 155 0 394. .=  cm/sec2 = 4.02×102 µg.

It is important to note that the above inequality on vibrations associated with induced
temperature fluctuations represents a worst-case scenario.  The actual experimental
measurements involve an average over time.  This averaging will significantly ameliorate the
effects of AC temperature fluctuations.  An estimate of the time-averaging effect that assumes a
vibration spectrum consistent with the estimated ISS environment indicates that the effective
variations in temperature will be reduced by approximately two orders of magnitude in a
plausible experimental scenario.  Thus, random accelerations associated with AC temperature
fluctuations must be less than 4×104 µg after taking into account time averaging. 

Temperature Drift Due to Vibration-Induced Viscous Heating: Shear Viscosity

The equation for the maximum time rate of change of the temperature due to experimental cell
accelerations is [40]
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where Cs is the adiabatic sound velocity, η is the shear viscosity, xη is the critical exponent for
the weak divergence of the shear viscosity, and a(ω)a(-ω) is the mean square acceleration per unit
angular frequency.  This rate of temperature rise decreases as the critical point is approached.  As
will be made clear shortly, the rate of increase of the temperature predicted by the above
expression is completely negligible over the experimental reduced temperature range
10–6 < |t| < 10–1.

Temperature Drift Due to Vibration-Induced Viscous Heating: Bulk Viscosity

Bulk viscosity effects impose one of the most stringent constraints on the spectrum of
vibrations.  In contrast to the shear viscosity, the bulk viscosity displays a strong divergence as
the critical point is approached.  The expression for the rate of temperature increase that results
from “bulk” viscous heating reduces to

dT

dt
t a a d≈ × × ( ) −( )− − − ∫4 48 10 29 2 2 2.

K
s

γ α ω ω ω ω. (35)

This relationship is obtained by substituting the coefficient of bulk viscosity for the shear
viscosity on the right-hand side of the first line of Eq. (34).  The right-hand side of Eq. (35)
diverges as t → 0.  At a reduced temperature of 10-7, we obtain from this equation

dT

dt
a a d≈ × ( ) −( )− ∫4 5 10 22 2.

K
s

ω ω ω ω. (36)
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If we assume that the rate of temperature increase is to be no greater than 10-6 K per week, then
the following inequality must hold:

ω ω ω ω2 93 67 10a a d( ) −( ) ≤ ×∫ .  /cm s2 6 . (37)

Finally, we turn to the limits on the vibration spectrum contained in Eqs. (37) and (29).
Given the restriction in Eq. (33), we see that Eq. (29) represents a less stringent requirement on
the vibration environment.  As for the inequality in Eq. (37), an upper limit on the integral on the
left-hand side is obtained by multiplying the integral in Eq. (33) by the square of the largest
expected angular frequency, ωmax = 2πfmax, where fmax ~ 100 Hz is well above the expected peaks
in the vibration spectrum.  This multiplicative factor is 3.95×105 s-2.  Incorporating this upper
limit into the inequality, we are left with the requirement that the total integrated weight of
random accelerations must be less than ~ 105 µg.  This requirement, that comes from the
bulk viscosity-induced temperature drift, is comparable to the one associated with random AC
temperature variations (~ 0.4×105 µg) and is about 90 times greater than the integrated
acceleration spectrum of 510 µg that represents the requirements for the LTMPF [39].  Thus, the
conclusion drawn from this vibration analysis is that the expected vibration environment on the
LTMPF should not adversely affect the proposed MISTE experiment.  We have defined the
MISTE requirement to be ≤ 5 µg at DC and ≤ 1500 µg rms total integrated acceleration over the
range 10-3 < f < 500 Hz.
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3.9 Heat Capacity Measurement

Science requirements for the heat capacity measurement along the critical isochore are
developed in this subsection.  The heat capacity data far away from the critical temperature have
an uncertainty mainly due to the temperature scale.  The thermodynamic temperature scale is not
known to better than 0.1%; therefore, the absolute accuracy of the temperature measurements is
limited at this level.  Accuracy of data very close to the critical point will also be affected by non-
instrumental factors such as the gravity effect (see Fig. 3), being slightly off the critical isochore
(see Fig. 6), thermal equilibration times (see Fig. 14), and cosmic ray heating (see subsection 3.8).
In this section we will discuss instrumental accuracy/uncertainty and thermal relaxation times.

We have evaluated the drift and heat pulse methods for measuring the specific heat.
Figure 16a shows a cooling drift run along the critical isochore that is consistent with earlier
measurements [16].  In this study [41], a radiation shield whose temperature was controlled
slightly below the critical temperature surrounded the sample stage.  The sample was initially
regulated at a reduced temperature of ~ 3.5×10-4 above the transition.  Then the sample was
cooled to the shield temperature after removing the cell temperature regulation.  These data were
taken with an average cooling drift rate of 3×10-4 K/hr.  For this drift rate the overall density
inhomogeneity in the sample due to the “piston effect” [27], which is in addition to the gravity
stratification, is estimated to be ≤ 0.1% in the single-phase region.

A log-log plot of the drift data is shown in Fig. 16b.  This figure clearly shows the rounding
effect due to the earth’s gravitational field, which is consistent with the prediction given in Table
II.  The rounding of the data close to the transition is dependent on the cooling drift rate, average
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density in the cell, and horizontal leveling of the cell.  However, the 1% resolution in CV within
the single-phase region required for the flight experiment has been achieved.  The drift method
will be primarily used for measurements very close to the transition t ≤ 10-4.  While these
precision data were limited by gravity effects, we still performed a least square fit to the gravity
free region.  The fit to the data in the region 1.9×10-4 < t < 7×10-4, using the leading and first
Wegner correction terms, yielded a leading asymptotic amplitude ratio A A0 0 0 509+ − = .  that is
consistent with the theoretical value 0.523 within the combined uncertainties.  

A second method that is planned for specific heat measurements throughout the critical region
is the pulse technique.  This method was successfully used in the LPE and CHeX experiments.
Pulse measurements for 3He near the critical point are shown in Fig. 17.  The pulse heat used for
both of these measurements was 2µJ.  In each case, the temperature of the shield stage was
initially controlled to keep the sample cell at a constant temperature before the pulse.  At the
pulse onset, the shield stage stopped controlling the sample cell and reverted to maintaining its
own temperature constant.  After a pulse, there is a dramatic difference in the transient
temperature behavior between the single-phase and two-phase regions.  The long time constant
observed in the two-phase region is attributed to a redistribution of mass between the liquid and
gas phases.  The planned MISTE space flight cell, that is 8 times larger in volume than the
ground-based cell, should lead to a further enhancement in the temperature stability.  A complete
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Fig. 16b. Log-log plot of heat capacity along the critical isochore.



45  

set of pulsed specific heat measurements along the critical isochore in the range 10-4 < t < 10-1 is
now being carried out.
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Fig. 17.  Pulse measurements of the specific heat in both the one- and two-phase regions.
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Figure 18 shows the important factors used in defining the CV measurements.  A 1% gravity
effect on CV measurements is shown for both a 1g and 3µg environment for the case of a cell of
height 0.05 cm and a proposed flight cell of height 4 cm.  The gravity free reduced temperature
range is limited to t > 7×10-7 for the proposed 4 cm high flight cell.  The graph also shows the
range of application for GRT’s and HRT’s.  Using HRT’s allows 1% temperature measurements
to be performed down to t ~ 10-6.  Analysis of previous ground-based CV measurements [16]
implies that the influence of confluent terms will be reduced to 1% at t ≈ 10-4.  Thus, the
experimental measurement range has the potential of covering at least two additional gravity-free
decades.

The achievable CV measurement range depends on how long it takes to reach thermodynamic
equilibrium after a change in the system parameters.  In estimating an effective equilibrium time
constant, τ2, one must take into account the “piston effect” [35] when performing measurements
near a liquid-gas critical point.  The “piston effect” applies to a sudden change in a constant
volume cell with uniform temperature boundaries.  This effect leads to a “critical speeding up” in
the first stage of equilibration that usually lasts only a fraction of a second and produces almost
complete temperature equilibration.  However, the remaining small temperature gradient induces a
measurable density gradient due to the diverging expansion coefficient.  We have looked into the
equilibration process for CV measurement using the heat pulse technique.  Using the theoretical
models for the piston effect [27], we calculated the spatial and time profiles for temperature and
density of 3He under microgravity.  This analysis showed that the effective relaxation time
constant, τ2, was very short (~ seconds even at t = 10-7); thus, the measured specific heat is
essentially the same as at the critical isochore.  

We also plan to perform specific heat measurements in the two-phase region (T < Tc).  In this
region, a specific heat measurement should take a significantly longer time to reach final
equilibrium (see Fig. 17).  This is due to fluid mass moving across the meniscus and converting
from one phase to another to accommodate the new equilibrium temperature.  These effects will
limit the ability to perform CV measurements close to the critical point in the two-phase region.
The stray heat associated with cosmic ray heating will also complicate the measurement of the
specific heat because of the long equilibrium time.  The pulse technique will be the primary
method for measuring the specific heat in the two-phase region.  Extrapolating experimental
measurements of the time constant in the two-phase region to a microgravity environment yields
a time constant of ~ 6 hours at t = -10-5 for an effective cell height of 0.05 cm.  

Taking all of the factors into account leads to a science requirement for measuring CV to better
than 1% in the single-phase range 10-6 ≤ t ≤ 10-1 and in the two-phase range 10-5 ≤ -t ≤ 10-1.  In
the remainder of this subsection we will discuss various factors that define the science
requirements for performing the specific heat at constant volume experiments.  For the flight
experiment, we plan to emphasize the pulse technique over the drift technique.  This decision is
based on the adverse heating effects associated with cosmic rays (see subsection 3.8).
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A.  Heat Pulse

The accuracy of the heat pulse is an important factor for the CV measurement.  In order to be
sure that the uncertainty in the measurement is not limited by the heat pulse measurement, we
have chosen a goal of 0.05% for the accuracy of the pulse.  The primary uncertainty in the pulse
heat measurement is due to the measurement of the voltage applied to the heater and the pulse
duration.  It is anticipated that the LTMPF facility will provide instrumentation to achieve this
requirement [39].

B.  Temperature Step

The resolution of the temperature step height depends on the temperature range of the
measurement.  At t = 10-6 we have a 1% requirement in the specific heat measurement.  This is
achievable using a temperature step height of ∆t = 10-7 that corresponds to ∆T = 3×10-7 K.  The
1% requirement in the temperature step is attained since we have a temperature resolution of ~
1 nK.  In most of the required experimental range (10–5 ≤ t ≤ 10-1) the resolution will be much
better than 1%.

C.  Stray Heat Input

A 10-9 W stray heat input, specified in the LTMPF SRED, will cause a 2% error in the
calculated heat capacity in the flight cell at the reduced temperature of t ~ 10-7.  However, in most
cases (10-6 ≤ t ≤ 10-1) the stray heat effect is negligible and will be averaged out by multiple runs
in the single-phase region.  The requirement for stray heat input is set at < 5×10-8 W.  
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3.10 Susceptibility Measurement

A.  PVT Method

In preparation for the flight PVT measurements, we have developed an in-situ charcoal
sorption pump for the ground-based studies (see Section 3.5).  The pump is located on a separate
thermal stage.  Controlling the temperature (and thus the pressure) of the sorption pump varies
the density of the sample.  To obtain data along an isotherm, the sample stage is controlled at a
desired temperature near the critical point while the sample is slowly removed from the cell by
lowering the pressure in the sorption pump.  This is accomplished by slowly reducing the
sorption pump temperature from a nominal value (~ 20 K).  When the temperature of the
sorption pump reaches ~ 4 K, the sample density is approximately 20% below the critical value
(∆ρ ~ -0.2).  The cell can then be refilled to an initial density approximately 20% above the
critical value (∆ρ ~ 0.2) by heating the sorption pump back to its nominal temperature.  The P-ρ
measurements are taken while the sample is being removed from the cell.  Figure 19 shows an
initial analysis of P-ρ measurements along several isotherms near the critical point in the range
–4.7×10-3 < t < 3×10-3.  The density ramping rate was typically 5 - 10 hours for a given isotherm.
The isotherms near the critical temperature were measured at several different ramping rates to
insure quasi-thermodynamic equilibration.  In the space flight experiment, different ramping rates
will be used to find the optimal rate for temperatures very near the critical point.

For T < Tc, Fig. 19 clearly shows the phase boundary defining the coexistence curve.  From
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Fig. 19.  P-ρ measurements along isotherms near the critical point of 3He.
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the discontinuities in (∂P/∂ρ)T , we can determine the coexistence curve to within ~ 0.1%.  From
asymptotic and crossover coexistence data obtained during the flight experiment, we should be
able to determine the critical amplitudes B0 and B1.  Also, by deriving (∂P/∂ρ)T in the single-phase
region at the coexistence curve discontinuities, we can obtain the susceptibility along the
coexistence curve, in the liquid and gas phases, from which the critical amplitudes Γ0

−  and Γ1
−  can

be determined.

Figure 20 shows the calculated susceptibility obtained from PVT measurements at
t = 1.31×10-3.  The open circles, corresponding to the right axis in the plot, represent the
susceptibility obtained from the slope of the P-ρ curve.  The maximum value of the
susceptibility, which occurs at the inflection point in the P-ρ curve, is within 0.1% of the critical
density.  On the ground, the critical density is determined at a smaller reduced temperature of
~ 6×10-4, which is close to the onset of the gravity rounding effect (see subsection 3.6).  This P-ρ
inflection point method has been used in previous studies [26].  However, a better determination
of the critical density will be possible during the flight experiment where the gravity effect will be
minimized.

Figure 21 shows the calculated susceptibility along the critical isochore obtained from PVT
measurements over the range of 2.5×10-5 < t < 1.5×10-1.  As can be seen from the figure, the data
are consistent with the earlier work of Meyer’s group [18,42].  The improved leveling of the
experimental cell permitted gravity-free measurements to be performed closer to the transition
(see subsection 3.6).  The data are now being analyzed to determine the leading asymptotic
critical amplitude Γ0

+  and first Wegner correction-to-scaling amplitude Γ1
+ .  We are also using this
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data set to test the application of an RG crossover model [23].

B.  Electrostriction technique

While the susceptibility χT along the critical isochore can be derived from PVT measurements,
a pressure resolution of δP/P ≈ 1:1010 is required to measure χT with 1% uncertainty at t ≈ 10-6

(see Appendix B).  This pressure resolution is very difficult to attain using conventional means.
We have been evaluating a new electrostrictive technique to attain this required pressure
resolution [41].  This technique takes advantage of the fact that an electric field gradient can
produce an equivalent pressure gradient within a dielectric fluid.  A DC voltage, V, is applied
across the density sensing capacitor to create an electric field in the capacitor gap.  The induced
pressure produces a density change.  This density change can be detected by a capacitance change
∆C.

An example of the electrostriction effect near the 3He critical point is shown in Fig. 22.
Density changes are shown for a DC bias ranging from 10 - 40 volts.  After the DC bias is turned
on or off, the capacitance initially experienced an abrupt change followed by a transient that in
the final equilibration stage can be fit by an exponential function.  The equilibrium capacitance
was extrapolated from the fit.  The capacitance change for a particular DC bias was corrected for
the structural capacitance change caused by the DC voltage applied across the gap.  By plotting
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the measured capacitance change ∆C versus the square of the total rms voltage, including both the
DC bias and the excitation voltage across the capacitor, we obtain 

    
lim /

V
C V

total
total
2

→0
∆ , which is used

to calculate the susceptibility without the systematic error caused by nonlinear effects close to
Tc.  For the details on the data analysis of the electrostrictive technique see Appendix B.  The
susceptibility measured using the electrostriction technique agrees with the one measured using
the PVT technique to within 10% in the region where the two overlap, which is consistent with
the expected uncertainty in the absolute value of the capacitance gap used to calculate the electric
field.  The data shown in Fig. 22 have a rather long relaxation time to reach the final equilibrium
state after the application or removal of a DC bias.  We have taken this equilibrium time constant
into account in developing the experimental measurement scenario for the flight experiment.

Figure 23 shows a log-log plot of the effective susceptibility versus reduced temperature.
The rounding at t < 10-4 is consistent with the prediction given in Table II.  An additional
contribution to this rounding could be due to a slight tilt of the cell.  In the presence of gravity,
such a tilt leads to an increased density deviation from ρc at the capacitor location as Tc is
approached.  However, this tilt effect was significantly reduced for this study by applying the
leveling procedure described in subsection 3.6.  An initial study demonstrated the viability of
using this electrostriction technique for future microgravity experiments very near the transition
[44].

In Fig. 24 we show a summary of important factors associated with the measurement of the
susceptibility along the critical isochore.  In the flight experiment, we plan to use two techniques
to measure χT, the electrostrictive (ES) technique, and a conventional PVT technique.  The
electrostrictive technique will be the main method for measuring the susceptibility close to Tc.

-1

0

1
10

6
δΤ

∗

6543210

Time (hr)

40
30
20
10

0

V d
c (

V
)

6
4
2
0

10
3
δρ

∗

-4
-2
0
2
4

10
6 δP

*

t = 3.6×10−5 τ = 355 s

Fig. 22.  Electrostriction effect at t = 6.6×10-5.



52  

The conventional technique will primarily be used to measure the susceptibility farther away
from the transition, and to calibrate the electrostrictive technique within the temperature range
where the two methods overlap.  The smallest reduced temperature, for which the ES technique
can be used, was determined from the expected systematic error associated with being off the
critical isochore.  From that analysis we find that the ES technique is capable of covering the
reduced temperature range 6×10–7 ≤ t ≤ 4×10-3.  The reduced temperature ranges for the PVT and
electrostriction techniques are shown in Fig. 24.

A capacitor with a gap of d = 50 µm will be used to measure the density in the flight cell.
The dependence of the theoretical diffusive relaxation time associated with density changes in the
capacitor gap is shown in Fig. 24 as a function of reduced temperature.  It is seen that this
diffusive relaxation time is expected to be only a few minutes even at t ~ 10-7.  However, the
present measurements using the electrostriction technique show a much longer relaxation time
after the application or removal of a DC bias.  An investigation of this long relaxation time was
initially performed using a density sensor that was essentially thermally isolated from the cell
walls.  That study indicated the measured relaxation time was consistent with an effective height
equal to the cell height and not the capacitor gap.  A new density sensor design, having a
significantly improved thermal link to the cell walls, has recently been tested.  The measured time
constant for the new density sensor is ~ 5 times smaller than the previous sensor.  We have taken
these experimental time constants into account in developing our flight measurement scenario to
fit within the allotted experimental timeline.

The reduced temperatures associated with a 1% error in χT due to gravity effects (see Fig. 4a)
are also shown in Fig. 24 under 1g and 3µg conditions for the cases of the present 0.05 cm high
cell and the proposed maximum 4 cm high flight cell.  For the proposed 4 cm high flight cell, the
gravity-free reduced temperature range is limited to t > 7×10-7.
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An experimental estimate of the onset for the asymptotic region can be quite uncertain
because it is based on the data outside the asymptotic region and the gravity effect excludes
measurements close into the transition.  The dashed line in Fig. 24 reflects this uncertainty in the
onset of the asymptotic region.

Taking into account the various factors influencing the susceptibility measurement leads to a
required MISTE flight experimental measurement range of 10-6 ≤ t ≤ 10-1, which is shown at the
bottom of Fig. 24.  It is seen that the flight experiment is expected to provide accurate
susceptibility measurements for approximately two and a half additional decades in reduced
temperature closer to the critical point than previous ground-based measurements [18,26].

A.  Measurements Along the Critical Isotherm

The asymptotic critical exponent δ and critical amplitude D will be determined from
measurements of P and ρ along the critical isotherm.  Susceptibility measurements will yield an
exponent whose value equals δ - 1 (see Appendix B).  Again we plan to use the electrostriction

10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1

T/Tc − 1

3 2 1 0 -1

Asymptotic regime

Electrostriction Technique

PVT technique

MISTE χχχχΤΤΤΤ measurement range

Strong density stratification

Previous expts.
      [18,26]

(1g)

(3µg)

log( Diffusive relaxation time (s)   [d = 0.005 cm] )

(0.05 cm) (4 cm)

(0.05 cm)

Requirement

(4 cm)

Fig. 24. Factors affecting the measurement of susceptibility along the critical
isochore.



54  

technique as the main method for measuring the susceptibility along the critical isotherm close to
the critical point.

A summary of the important factors that affect these measurements along the critical
isotherm is shown in Fig. 25.  Shown in this figure is the electric field E as a function of the
reduced density ∆ρ that is required to induce a density change δρ = 5×10-4 at each reduced
density.  This density change was chosen to keep the uncertainty in the susceptibility
measurement under 1%.  The required rms voltage across a capacitor with a gap size of d = 50
µm is also shown in the figure.  We anticipate using a maximum of 200 V for the electrostriction
technique, which implies experimental measurements can be performed up to a reduced density
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of ∆ρ = 0.15.  The dielectric breakdown of 3He occurs at E = 4×105 (V/cm) based on the
information obtained for 4He.  Since the maximum E field for a 200 V DC bias applied on a gap of
50 µm is 3×104 V/cm, the breakdown should not be a concern for the proposed critical isotherm
measurements.  Possible interference from cosmic ray particles on dielectric breakdown is being
investigated.  For ∆ρ < 7×10-3 and within t = 3×10-7, the systematic error in determining δ will be
more than 1% (see also Fig. 8).  Therefore, the limit of the ES technique (∆ρ = 7×10-3) is set by
the uncertainty in the MISTE goal to determine the critical isotherm within t ≈ 3×10-7.  If the
critical temperature, Tc, could only be determined within |t| ≤ 8×10-7 from the susceptibility and
specific heat measurements along the critical isochore, a conservative lower limit of |∆ρ| ≥ 10-2 is
required for using the electrostriction technique.  As it can be seen from Fig. 25, even for an
isotherm at t = 8×10-7, the susceptibility measurements will be essentially equivalent to that of
the critical isotherm for ∆ ρ  ≥ 10-2.

The conventional PVT method will be used primarily for the critical isotherm measurement
for ∆ ρ  ≥ 5×10-2.  It will also be used to calibrate the ES technique where the two overlap.  The
dependence of the diffusive relaxation time is shown at the top of Fig. 25, now as a function of
reduced density.  This relaxation time is again expected to be only a few minutes even at
∆ρ = 7×10-3.  As stated above, a much longer relaxation time was observed in our ground-based
measurements, and these long time constants are taken into account in developing the flight
experiment scenario.

The reduced densities associated with a 1% error in χT due to gravity effects (see Fig. 4b) are
also shown in Fig. 25 for 1g and 3µg conditions for the case of the present 0.05 cm high cell and
the proposed maximum 4 cm high flight cell.  For the present cell, a µg environment would
permit susceptibility measurements to be extended by approximately one and a half decades in
reduced density closer to the critical point without gravity rounding effects.  The gravity-free
reduced density range is limited to |∆ρ| ≥ 10-2 for the proposed 4 cm high flight cell.  The dashed
line in Fig. 25 reflects the uncertainty in the onset of the asymptotic region.

Taking into account all of the factors discussed above, one can see that the required reduced
density range of 10–2 ≤ |ρ/ρc – 1| ≤ 10-1 for the MISTE flight experiment will enable
measurements approximately one additional decade closer to the critical point than previous
ground-based measurements [26].

4. EXPERIMENT TIMELINE AND DATA ACQUISITION

4.1 Measurement Plan

This section contains an outline of our baseline measurement scenario.  This baseline plan will
meet all the MISTE science data requirements and some of the goals within a planned 4.5 month
LTMPF data-taking period.  The plan can also be extended or compressed if the on-orbit lifetime
is different than expected or if station environments are not as predicted.  After the LTMPF is
launched and positioned on the JEM-EF, initial turn on will be followed by about 5 days of
functional checks, calibrations, and orbital environment characterization (charged particle effects
and vibration) before scientific studies commence.  
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The experimental cell will initially be filled to a near-critical density on the ground using the
techniques we have already developed (see subsection 3.5).  The first microgravity measurements
will be made along this near-critical isochore.  Full sets of specific heat and electrostriction
susceptibility measurements will provide a significant initial data set.  The data will be used to
determine the critical temperature, Tc, and provide preliminary data on the asymptotic critical
amplitudes, A0

+ and Γ0
+ , and critical exponents, α  and γ.  These measurements will be followed

by investigations of any unexpected effects.

In the next phase, the low-temperature valve will be opened and remain open for a complete
set of measurements along isotherm paths.  The sample density will be controlled using an in-situ
transfer system (see Section 3.5).  These measurements will produce a wealth of equation-of-
state data throughout the critical region, including susceptibility information along the critical
isochore, critical isotherm, and coexistence curve.  Isotherms below the critical temperature will
probe the coexistence curve.  The baseline plan calls for a full set of isotherm data to be
completed, followed by investigations of any observed anomalies before the valve is closed again.
A much more accurate, microgravity-determined value for the critical density will be obtained
from an analysis of the early flight isotherm data.  In the next phase, the cell will be filled to the
newly determined ρc value and the valve will be closed again.

A complete set of heat capacity data in the one- and two-phase regions and electrostriction
data will be taken at ρc next.  As a contingency, if the preflight fill density turns out to be far
from the true ρc, these critical isochore measurements may be shifted earlier in the schedule to a
point before the bulk of the isotherm measurements.  This will ensure that Tc is accurately
known during the critical isotherm experiments.

During the final period of the measurement schedule, the low-temperature valve will be
exercised many more times to probe isochores progressively farther above and below ρc.  In this
way degradation of the valve with cycling will have minimal impact.  Along each isochore, drift
and pulse specific heat data will be taken.  Electrostriction measurements will also be taken at and
near Tc along most of the isochores.  

In this measurement plan, all science activities are counted with a minimum of 10% allowance
for SAA passes.  For some of the data nearest the critical point we allowed up to a factor of two
increase in the time required because of possible charged particle heating disturbances.  Our
current plan assumes that the ISS will be completely assembled at the time of the LTMPF-M1
flight.  Calculations show that MISTE is not extremely sensitive to vibrations (see subsection
3.8), so we have assumed that data can be taken during 80% of the "nonmicrogravity-mode"
station time (which is about half of the total time).  Given this, we should be able to take a
considerable amount of data even if the experiment begins in the more vibration-plagued period
before station completion.  The plan for the initial period of system checkout and calibration
contains significant allowance for loss of telemetry contact with the ISS, since these activities will
probably be done near-real-time to watch for anomalies.  After this initial period, the system is
expected to be automated enough that no significant loss of time due to telemetry blackout is
anticipated.
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With these allowances for disturbances, our baseline data set will be completed within 4.5
months, including time specifically held for investigating anomalies or unexpected and interesting
effects.  The baseline scenario meets all MISTE experimental data requirements and some of the
desired goals.  In the event of a reduced available measurement period, the range of the data at
temperatures and densities farther from the critical point will be restricted.  On the other hand,
additional time could become available either because of better-than-expected dewar performance
or less charged particle or vibration impact than anticipated.  Under these circumstances, the
baseline data measurements could be repeated for statistical error reduction, and data acquisition
could be extended to regions farther from the critical point.  Other effects such as supercooling
into the two-phase region could also be investigated if time permits.

4.2 Data Requirements

This section addresses the three different types of data requirements.

A.  Instrument Data

In order to optimize data collection during the mission, it is important to maintain real-time
command and data telemetry with the experiment.  Unfortunately, the coverage of the relevant
Ku communication band for the ISS is expected to be much lower than similar coverage for the
shuttle, approximately 70% per orbit, on average.  Therefore, it is extremely important to
establish optimum data collection and command strategy for the experiment as early as possible
during the mission.  For previous space shuttle experiments (LPE, CHeX), the decisions
regarding the data acquisition strategy could be made by evaluating data inputs after about 3 days
of flight time.  It is obviously impossible to simulate everything about the mission because
proposed functionality of the ISS is still in transition and may not be available before the flight.
In the flight experiment we plan to optimize the command and telemetry sequence for the data
collection after about 1 week of flight time.  This early flight study will provide appropriate
inputs regarding ISS telemetry capabilities/coverage and the regions of the orbit where
environmental effects are at a minimum.  We believe that this strategy is quite adequate for the
experiment on ISS because of the expected long duration (~ 3 - 6 months).

B.  Environmental Data

It is very important to obtain environmental data during each orbit.  Charged particle data
should be monitored during the experiment to optimize the data acquisition plan and to look for
sources of heat input to the experimental cell.  It will also be necessary to perform checks of the
acceleration environment to look for the possible adverse effects on the experiment, such as
vibration heating effects during the heat capacity measurements.  In addition to a full spectrum of
the vibration environment, it is desirable to have the real-time peak acceleration vector amplitude
data transmitted to the instrument computer system to be correlated with the main science data.

C.  ISS Data

For the post-flight data analysis activity, it will be desirable to have data on the ISS location
and attitude as a function of mission elapsed time.  It is also important to know the actual
direction and magnitude of the gravity vector at the LTMPF on JEM as a function of time.  Also,
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records should be kept on the time of high-acceleration events such as docking events on the ISS
and attitude control reboosting events.  These events will need to be cross-correlated with the
main science data.

4.3 Mission Success Criteria

A.  100% Science Return

A 100% science return will require:

(a) Two measurement scans (each containing at least 5 data points per decade in reduced
temperature) of the specific heat at constant volume and the isothermal susceptibility
along the critical isochore (|∆ρ| ≤ 10–3) over the reduced temperature range |t| ≤ 10-3.  The
critical point should be approached to within a reduced temperature of t = 10-6 in the one-
phase region and within t = –10-5 in the two-phase region.

(b) Two measurement scans (each containing at least 30 data points) of the isothermal
susceptibility along the critical isotherm (|t| ≤ 8×10-7) over the reduced density range |∆ρ|

≤ 10-1.  The critical point should be approached to within a reduced density of |∆ρ| ≤
10–2.

(c) Measurements of the specific heat at constant volume and the isothermal susceptibility in
the critical region along non-critical paths.  The specific heat at constant volume should be
measured along at least four non-critical isochores in the reduced density range |∆ρ| ≤ 10-1.
The isothermal susceptibility should be measured along at least twelve non-critical
isotherms (six in the one-phase region over the reduced temperature range 5×10-5 ≤ |t| ≤
5×10-4 and six in the two-phase region over the reduced temperature range 1×10-5 ≤ |t| ≤
5×10-4).  At least 20 data points each for the specific heat at constant volume and the
isothermal susceptibility are required along each path.

(d) At least six isothermal susceptibility and density measurements along the liquid and gas
sides of the coexistence curve obtained from the six two-phase isotherms in (c) above.

B.  Minimum Science Return

For the minimum science return, the 100% requirements above will be reduced as follows:

(a) Only one measurement scan will be required with the critical point being approached to
within a reduced temperature of t = –3×10-5 in the two-phase region.

(b) Only one measurement scan will be required with the critical point being approached to
within a reduced density of |∆ρ| = 2×10-2.

(c) Only two non-critical isochores will be required for specific heat at constant volume
measurements, and only eight non-critical isotherms will be required for the isothermal
susceptibility measurements.

(d) Only four isothermal susceptibility and density measurements along the liquid side of the
coexistence curve will be required.  
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6. APPENDICES

Appendix A. Equations-of-State

Asymptotic Parametric Scaled Equation-of-State

The asymptotic scaling form of the equation-of-state is simply and elegantly displayed in the
parametric representation.  This representation, which has been shown to be consistent with
field-theoretical Renormalization Group results, expresses thermodynamic parameters and
functions in terms of two variables.  The first of these variables quantifies the “distance” of the
system from the critical point.  This quantity is directly related to the correlation length of the
system.  The second quantity is an “angular” variable that fixes the pressure and temperature (or
cognate thermodynamic parameters) on the phase diagram.  Calling the first parameter r and the
second one θ, a set of relationships describes the order parameter, ψ, the reduced temperature, t,
and the ordering field, h.  In the case of the liquid-gas critical point, the order parameter is the
difference between the system’s density, ρ, and the density at the critical point, ρc.  The
“reduced temperature” is actually a combination of the reduced temperature and the reduced
pressure that takes the system along the coexistence curve in the two-phase region and
extrapolates to the critical isochore in the one-phase region.  The ordering field is another linear
combination of the reduced temperature and reduced pressure that takes the system away from
the critical point in a different direction on the phase diagram.  In the parametric representation,
the following equations describe the quantities ψ, t, and h:

ψ θβ= ( )r Ψ (A1)

t rT= ( )θ (A2)

h r l= ( )βδ θ (A3)

The relations (A1) - (A3) replace the equation-of-state, in that the thermodynamics of the
system are defined in terms of two independent variables, r and θ.  The details of the equation-
of-state are contained in the precise forms of the functions ψ(θ), T(θ), and l(θ).  A variety of
proposals exist.  Among the simplest are the cubic models, for which

Ψ Ψθ θ θ( ) = +( )0
21 c (A4)

T T bθ θ( ) = −( )0
2 21 (A5)

l l d dθ θ θ θ( ) = − +( )0 1
2

2
41 . (A6)

When the coefficient c in Eq. (A4) is equal to zero, the model is called the linear model.
Interestingly, the linear version of the parametric equation-of-state is consistent with the results
of epsilon expansion calculations to order ε3.  To this order in the expansion parameter, ε = 4 - d,
where d is the system’s spatial dimensionality, the parameters in Eqs. (A4) - (A6) are explicitly
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determined.  Thus, there is a Renormalization-Group-based prediction for the homogeneous
equation-of-state of a system near its critical point.  The results of measurements in the MISTE
experiments will provide a test of this equation-of-state.

There are, in addition, a number of other versions of the parametric equation-of-state that can
be compared with the data to be collected in the proposed MISTE experiments.  It is hoped that
this comparison will shed light on the exact form of the equation-of-state, and that one will be
able to discriminate between the various candidates for the description of the relationships
between thermodynamic parameters near the critical point of an O(1) model.

The parametric equation-of-state can be easily connected to the general homogeneous
dependence of thermodynamic quantities.  For simplicity we will use the language of magnetic
systems.  The parametric formulas for the reduced temperature, t, the ordering field h and the
order parameter, ψ, are

t t rT= ( )0 θ (A7)

h h r l= ( )0
βδ θ (A8)

ψ θβ= ( )m r0 Ψ , (A9)

where t h m0 0 0,  and are nonuniversal metrical factors determined from experiment.  For this

analysis, these metrical factors are set equal to 1 except where specified.  Dividing Eq. (A8) by
Eq. (A7) raised to the βδ power leads to the relationship

h t l T Wβδ βδθ θ θ= ( ) ( )[ ] ≡ ( ) (A10)

Inverting this equation gives

θ βδ= ( )−W h t1 , (A11)

which shows that the angular variable θ is a function of the combination h/tβδ.  Substituting into
Eq. (A9) gives

ψ β βδ β βδ= ( )( ) ≡ ( )−r W h t r h tΨ Φ1 . (A12)

Now, by dividing both sides of Eq. (A7) by T(θ) and using Eq. (A11), we again obtain an

expression for r as a function of h/tβδ.  By substituting this expression for r in Eq. (A12), one
ends up with the equation

ψ β βδ= ( )t h tΩ . (A13)

In this way the singular part of any thermodynamic function that has the form rpG(θ) can be
rewritten in the generalized homogeneous form tpΓ(θ).  Thus, by plotting a measured
thermodynamic function by its corresponding tp throughout the critical region, one obtains a
universal curve as a function of h/tβδ that can be tested against any parametric equation-of-state
prediction.  
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As a first step in the theoretical preparation for the investigation of the universal equation-of-
state, we present here the predictions of four contenders for the asymptotic equation-of-state of
a liquid-vapor system in the critical regime.  We then compare the predictions from those
equations for the specific heat and isothermal susceptibility along a noncritical isochore and a
noncritical isotherm.  All the equations-of-state take into account the most recent techniques for
the calculation of critical-point thermodynamics, and all have been formulated with an eye to the
reproduction of universal amplitude ratios. It is interesting, but not entirely surprising, that the
predictions of these equations-of-state are more or less consistent with each other, at least in the
instances that are considered here.  There are small variations, and it is important to see whether
or not experiments can distinguish between them.  Additionally, it would be interesting to
discover whether or not there are any experimental configurations that are more sensitive to the
differences between the various equations-of-state.

The four equations-of-state are

1. The extended cubic model of Zinn and Fisher [45]

2. The extended sine model of Fisher and Zinn [7]

3. The field-theoretical equation-of-state of Guida and Zinn-Justin [46]

4. The high-temperature-series-based equation-of-state of Campostrini, et al. [47]

Noncritical paths

The conventional approach to the measurement of critical phenomena is to choose a path on
the phase diagram that terminates on the critical point. The asymptotic behavior of a
thermodynamic function is, then, a pure power law in the distance in parameter space from the
critical point.  It is possible to envision an experiment in which the path passes near to, rather
than through, the critical point.  Along such a path, the behavior of the susceptibility will be
controlled by features of the equation-of-state that go beyond the power law limits associated
with critical exponents.  In this appendix we consider two noncritical paths: a noncritical isochore
and a noncritical isotherm.  The paths are illustrated as dashed lines in Fig. A1, which locates them
on the phase diagram in the density-temperature plane.  Figure A1 illustrates the two noncritical
paths relevant to the plots below.  The horizontal path shown as a dashed line is a noncritical
isochore, along which the density of the system is fixed at a value not equal to the critical
density.  The vertical dashed line is a noncritical isotherm, along which the system’s temperature
is at a fixed value, different from the critical temperature.

The nonuniversal metrical factors, t m h0 0 0,  and  in Eqs. (A7-A9) can be determined from
experimental measurements of the isothermal susceptibility and the specific heat along the critical
isochore, along with a determination of the isothermal susceptibility along the critical isotherm.
The extraction of those quantities is made possible by the following two relationships, which
hold along the critical isochore
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and the additional relationship, which holds on the critical isotherm
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In the above equations, the functions C X X1 1 2θ θ θ( ) ( ) ( ),  ,  and  are universal within a particular
equation-of-state and are readily derived from the parametric functions defined above.  The value
θc of the parametric angular variable places the system on the critical isotherm.  With the use of
Eqs. (A14) and (A15), the metrical factors can be expressed in terms of the asymptotic amplitudes
A D0 0

+ +,  Γ ,  and .  These amplitudes will be determined from the MISTE flight measurements in the
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Fig. A1.  Density-temperature phase diagram of a liquid-vapor system.
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asymptotic region.  It is also anticipated that precision measurements performed in an earthbound
setting outside the gravity-affected region will permit an initial exploration of the predictions of
crossover equations-of-state.

Before proceeding with a discussion of the predictions of the various equations-of-state, we
describe the way in which the curves for the susceptibility along a noncritical isochore are
normalized so that they fall along the same asymptotes at both ends.  The methods described
here are straightforwardly extended to the case of the other curves plotted in this appendix.  We
start with the expression, Eq. (A14), for the susceptibility along the critical isochore.  The actual
version of the susceptibility that is plotted is that expression divided by the coefficient Γ0

+ .
Now, the equation that governs the variation of the temperature along a curve in the phase
diagram of the system along which the order parameter is a constant is

t = t0

Ψ
m0m θ( )

  

 
  

  

 
  

1/β

k θ( ) . (A16)

Let θk be the value that the angular variable takes on the coexistence line.  Again, making use of
the parametric expression, Eq. (A14), for the susceptibility, we end up with the following result
for the magnitude of this quantity at the coexistence curve

         t0
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−α

X1 θk( )
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The values of the order parameter Ψ are adjusted for the various equations-of-state so that
this quantity is equal in all cases.  As is clear from Eqs. (A14) and (A15), in order to compare
these theoretical curves to experiment, we must scale the horizontal and vertical axes using the
experimentally determined metrical factors.

The Isothermal Susceptibility

We start with the isothermal susceptibility, χT . This thermodynamic response function
corresponds to the compressibility in the case of the liquid-vapor system.  First, we display the
susceptibility, as predicted by the various models, along a noncritical isochore. Figure A2
displays a plot of the isothermal susceptibility in the liquid-vapor system for a noncritical
isochore.  The temperature is “reduced” with respect to the temperature at the coexistence curve,
TK.  Shown in this graph are the predictions for this quantity of the four equations-of-state
discussed in this appendix.  The curves have been adjusted so that they lie on top of each other
along the power-law tail to the right and the horizontal asymptote to the left.  This adjustment
allows the viewer to discern differences in the essential shapes of the curves.  It is unlikely that
experiments will distinguish between the four equations-of-state on the basis of a measurement of
the quantity depicted here.
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Figure A3 below displays plot of the susceptibility plotted along a noncritical isotherm.  The
density is “reduced” with respect to the critical density, ρc..  The graph shows the predictions of
the four equations-of-state discussed in this appendix.  As in the case of the plot along a
noncritical isochore, the curve interpolates between a power law in the rightmost region and a
horizontal asymptote at the far left.  There is no clearly visible distinction between the four
predicted curves.
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Fig. A3.  Plot of the susceptibility along a noncritical isotherm.
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The Specific Heat

Corresponding curves can be drawn for the specific heat.  Figure A4 is a plot of the specific
heat at constant density, equivalent to the specific heat at constant volume, for the liquid-vapor
system, for a noncritical isochore.  The temperature is “reduced” with respect to the temperature
at the coexistence curve, TK.  The graph displays the predictions of the four equations-of-state
discussed in this appendix.  The curves have been adjusted as described for the previous figures.
In this case, there is a visible distinction between what one equation-of-state predicts and the
results that follow from the three others.  The extended sine model of Fisher and Zinn [7] gives
rise to a small, but distinctive, feature on the shoulder separating the power law and the
horizontal asymptote.  We have in this case a possibly experimentally significant divergence
between one equation-of-state and the others in the group being compared.  To what extent this
ought to be taken seriously is not at all clear.  We are now evaluating whether this feature can be
determined experimentally.  

The final set of curves, shown in Fig. A5, shows a plot for the specific heat at constant
volume plotted along a noncritical isotherm.  The density against which the specific heat is
plotted is “reduced” with respect to the critical density, ρc..  The graph displays the predictions
of the four equations-of-state discussed in this appendix.  The curves have been adjusted as
described earlier.  Again, there is no clearly visible distinction between the four predicted curves.

In all the plots except the one shown in Fig. A4, we have a set of predictions that coincide to
within differences that probably cannot be distinguished experimentally.  It thus appears that the
four recent universal equations-of-state surveyed here provide predicted behaviors for the
specific heat at constant volume and the isothermal susceptibility along noncritical paths that are
in near-perfect agreement.  Experimental measurements will serve to test this consensus on the
implications of the universal critical equation-of-state.
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The MISTE experiment will also be able to probe the crossover from noncritical to critical
behavior, both along paths ending at the critical point and along the noncritical paths discussed
here.  In this way, MISTE should be able to assess the way in which crossover to asymptotic
critical behavior is manifested in the equation-of-state.  There has been theoretical and
experimental discussion of crossover in the equation-of-state in the vicinity of the critical point,
and the connection of this behavior with the results of the Renormalization Group has been
explored (see discussion in the next subsection).  We are planning to extend the RG analysis and
to adapt it to the 3He system by taking into account currently available results, including
crossover of the all-important four-point coupling constant.  Additionally, an assessment is
underway of the effects on the equation-of-state of the asymmetry of the liquid vapor system, as
manifested in the rectilinear diameter of the coexistence curve.  This effect is expected to be quite
small in 3He, as experimental evidence tells us that the coexistence curve of this system is
remarkably symmetric.  The outcome of the analysis will be expressions that will facilitate the
extraction of crossover information from measurements of the type described above.

Nonasymptotic Equations-of-State

The asymptotic scaled equation-of-state cannot be used in practice because the range of its
validity does not exceed t ~ 10-4 and ∆ρ ~ ± 0.05 from the critical point.  This estimate is based
on the expected values of the first corrections to the asymptotic scaling for simple fluids
( Γ Γ1 0

+ +  is of order unity) and on the expected accuracy in the measurement of the second
derivatives of the free energy (about 1%).  Hence, nonasymptotic corrections to scaling need to
be introduced into the equation-of-state in order to compare results to ground-based experimental
data.

In the first approximation one can consider only one correction term (the first Wegner
correction).  The first correction can be implemented into the linear parametric model by using
two alternative forms of the thermodynamic potential. Kiselev and Sengers [48] formulated the
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linear model using density and temperature as independent variables, whereas Levelt Sengers et
al. [49] used a field-dependent thermodynamic potential as a function of chemical potential and
temperature.  The asymptotic equation-of-state appears to be identical for these two
formulations, whereas the correction amplitudes are different.  As a result, the universal
correction-amplitude ratios are not the same, both differing from the theoretical predictions
(which themselves have considerable uncertainties).

Moreover, there are two other factors that contribute to the uncertainties of the
nonasymptotic parametric equation-of-state.  First, the nonasymptotic critical exponent ∆ is not
accurately known.  Its predicted universal value varies from 0.50 to 0.54, depending on the
method of calculation.  Second, there is a correction to the asymptotic scaling associated with
liquid-vapor asymmetry.  In the lattice gas (Ising model), this correction is absent.  The liquid-gas
asymmetry can be taken into account through the so-called mixing of the field variables
(temperature and chemical potential).  This is a rigorous way for accounting for the asymmetry,
but it requires an additional adjustable system-dependent parameter.

In principle, including higher-order terms in the Wegner expansion might help in extending the
range of validity of the scaled equation-of-state.  However, such a procedure involves additional
adjustable parameters, which are difficult to control.  The Wegner corrections drive properties of
simple fluids to mean-field (classical, van der Waals-like) behavior, although the classical limit is
never reached within the critical domain.  The larger the correction amplitudes, the more
pronounced a “crossover” to the classical behavior.  As the convergence of the Wegner series is in
doubt, a fit to the Wegner expansion is dangerous, and a closed-form crossover equation-of-state
is needed to determine the values of the correction amplitudes and to describe the properties of
fluids in an extended critical region.

Theoretical approaches to deal with the crossover problem have been considered by many
investigators (see, e.g., a list of references in [15]).  Most of these approaches are based on the
RG theory of critical fluctuations.  Although the exact solution of this problem for 3-dimensional
Ising-like systems is still not available, the main physical features of crossover phenomena have
been clarified.  An explicit expression for the crossover susceptibility in zero field has been
obtained by Belyakov, Yu, and Kiselev [50] in the first order of the ε-expansion.  Bagnuls and
Bervillier have obtained an alternative solution for the susceptibility from a field-theoretical
approach [51].  These solutions did not yield the equation-of-state.  Another solution of the
crossover problem that does yield a scaled equation-of-state (i.e., it is not restricted to systems in
zero field) can be obtained as an approximation to a more general approach based on a so-called
match-point method of the Renormalization Group theory [52] as developed by Nicoll and co-
workers [53] and further implemented by Sengers and co-workers [54].

The phenomenological equation-of-state developed from the Nicoll theory was called the
“crossover Landau model” because it was based on the classical Landau expansion renormalized
by fluctuations.  A comparison between these three alternative solutions has been made by
Anisimov et al. [15].  It has been shown that in the infinite cutoff approximation, which neglects
the discrete microscopic structure of fluids, all approaches mentioned above give the same
crossover behavior of the susceptibility in zero field.  In this approximation the crossover
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between Ising-like asymptotic critical behavior and mean-field (classical) behavior is controlled
by a single parameter, the crossover scale, also called the “Ginzburg number.”  The correction-to-
scaling amplitudes, as well as the fluctuation corrections to mean-field behavior, can be calculated
through the Ginzburg number.  However, if cutoff effects are included, the crossover equation-of-
state contains two crossover parameters; namely, a scaled coupling constant and the cutoff wave
number.

Recently, the two-parameter crossover Landau model has been successfully applied to
describe the crossover susceptibility obtained by computer simulation of the 3-dimensional Ising
model with a variety of interaction ranges [55].  The crossover Landau model of the scaled
equation-of-state has been applied to many fluids and fluid mixtures [54,56] and to light and
heavy water in the critical region [57].  It has also been shown that cutoff effects play a crucial
role in understanding the crossover phenomena in complex fluids [58].

Although the crossover Landau model of the scaled equation-of-state represents the current,
experimental and simulation data within their accuracy, it yields values of the asymptotic
amplitude ratios that do not perfectly match the most accurate Ising values.  The discrepancy is
4% for the A A0 0

+ −  ratio and about 10% for A B0 0 0
2+ +Γ , which is significantly larger than the

accuracy of the theoretical values (about 2% for both ratios).  The crossover scaled equation-of-
state needs to be improved to satisfy the theoretical amplitude ratios.  A possible step in this
direction would be the formulation of the crossover equation-of-state in a parametric form.  Work
towards developing such a parametric crossover equation-of-state is currently in progress.

Accurate experimental data of the properties of 3He in the extended critical region become
crucial for testing alternative approaches to the crossover problem in general and to a crossover
scaled equation-of-state in particular.  Accurate experimental data within the extended critical
region (|t| < 10-2 and ∆ρ ≤ ± 0.1 − 0.2 from the critical point) should be used to test different
versions of the nonasymptotic scaled equation-of-state.  The MISTE flight experiment will
provide experimental measurements in the asymptotic region that can be used to more accurately
determine the leading critical amplitudes.  These new measurements coupled with ground-based
crossover data will permit a stringent test of equation-of-state models.
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Appendix B.  Analysis of Susceptibility Measurements

In this appendix we discuss in detail the proposed techniques to measure the susceptibility
along the critical isochore and critical isotherm.  These techniques will also be valid along other
isochores and isotherms.  In the following discussion, we define ∆P = P/Pc – 1.  We also scale
variables with corresponding critical parameters and denote them with asterisks.  In many of the
following analyses, we extensively use the restricted cubic model given by:
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where the effective critical exponents and fluid-dependent fitting parameters, a and k, are given in
reference [27].

Conventional Technique

In the conventional technique, one measures the changes in density and pressure directly
along an isotherm, and then deduces the susceptibility as χ ρ ∂ρ ∂T T

P= ( ) .  The dependence of
reduced P and χT on the reduced density for 3He is illustrated in Fig. B1 for t = 1×10-4.
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Fig. B1. Reduced pressure and susceptibility versus reduced density for 3He
at t = 1×10-4.  The ∆P versus ∆ρ curve was derived using the
restricted cubic model [27].
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The uncertainty in the measured isothermal compressibility is determined from
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Along the critical isochore, the first derivatives ∂χ ∂ ρT P( )  and ∂χ ∂ρT P( )  equal zero since χT

peaks at ∆ρ = 0.  The second derivatives in Eq. (B5) can be calculated for any given reduced

temperature along the critical isochore using the restricted cubic model,
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The relative uncertainty in χT along a near-critical isochore is given by
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Equations (B9) and (B10) can be used to determine the experimental resolutions of pressure
δP* and density δρ* required to obtain a given uncertainty δχT/χT.  Figure B2 shows the pressure
and density resolutions as a function of reduced temperature for δχT/χT = 1%.

Using a Straty-Adams type capacitance pressure gauge [33], we find that the pressure
resolution is related to a capacitance resolution by

δ δP
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max 1 , (B11)

where Pmax is the pressure when the capacitor gap decreases to zero.  In practice, an AC
capacitance bridge can achieve a capacitance resolution of δC/C ~ 4×10-8, and a ratio Pmax/P ~ 3 is
also achievable.  Thus, we can attain a pressure sensitivity δP/P ~ 8×10-8.1  It can be seen from
Fig. B2 that this limits the experimental range to t > 6×10-5 using the conventional technique.  

The experimental density resolution δρ/ρ, required to obtain a given uncertainty δχT/χT along
the critical isochore, can be determined using Eq. (B10).  The dashed curve in Fig. B2 shows the

                                                
1 Our current Straty-Adams type capacitance pressure gauge has Pmax/P ~ 11, resulting in a pressure resolution of
δP/P ~ 4×10-7.
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density resolution as a function of reduced temperature again for the case of δχT/χT = 1%.  The
Clausius-Mossotti equation,

ε
ε

πα ρ ζ−
+

= =1
2

4
3

, (B12)

will be used to deduce a density from a measured capacitance.  Kierstead [59] gave the expression
for the 3He polarizability as

  α ρ= −0 123413 0 007166. . . (B13)

The critical density of 3He is ρc = 0.01374 mole/cm3.  Therefore, in 3He at ρ = ρc,
α = 0.12331 cm3/mole, ζc = 0.007097, and εc = 1.02144.  The density will be changed by less
than 30% about the critical density in the planned MISTE experiments.  As a result, the 3He
polarizability will vary about 0.02%, and a systematic error in derived density will be less than
0.02% if α = 0.12331 cm3/mole is used throughout.  In ground-based studies, we have achieved
δC/C ~ 7×10-8 with an excitation voltage of 15 V, excitation frequency of 2.7 kHz, and time
constant of 0.3 s.  This leads to a density resolution of δρ∗  = 3×10-6 that will be quite sufficient
for the conventional technique in its applicable range.

Electrostriction Technique

We have been evaluating an electrostriction technique for performing susceptibility
measurements very near to the transition.  This technique indirectly measures the pressure
gradient from the expression
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Under an isothermal condition, we have
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which links the chemical potential gradient to the electrical field gradient.  When a DC or
equivalent rms AC voltage is applied across a capacitor gap, the 3He fluid density increases in the
gap.  With the pressure gradient in Eq. (B14) written in terms of the density gradient via the
susceptibility, we have a formula that links the density change and the inducing electric field
within the capacitor gap:
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Here ρ1 is the fluid density outside the capacitor gap.  When E ≠ 0, the change in ρ1 is negligible
since the volume within the capacitor gap is much smaller than the cell volume.  The fluid
dielectric constant ε on the right-hand side of the equation is linked to the fluid density inside the
capacitor gap ρ2 via the Clausius-Mossotti equation.  When the density change δρ = ρ2 - ρ1 is
small, χT can be taken as a constant, and one obtains
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Therefore, the application of the electrostrictive technique for measuring χT requires an accurate
experimental measurement of the ratio of density change over the square of the inducing electric
field.

Critical Isochore
For a parallel plate capacitor with a gap d, the electric field in the gap is E = V/d with V being

the applied voltage across the gap.  Since χT diverges strongly as Tc is approached, the required
voltage across the capacitor gap will decrease if one requires the induced density change to remain
a constant (see Fig. B3a.).  At t = 6×10-7, this required voltage is ~ 0.8 V for a capacitor gap of
d = 5×10-3 cm and δρ∗  = 5×10-4; a 1% resolution in χT at this reduced temperature translates into
a required voltage resolution of 8 mV, which is easily achievable.

An AC bridge circuit is used to measure capacitance.  Since the density change is proportional
to V2, the rms AC excitation voltage across the capacitor will have the same effect as an external
DC voltage.  Model calculations (see Fig. 7) show that at t = 1×10-6, the measured susceptibility
will have less than 1% systematic error from its value along the critical isochore if the
measurement is taken in a sample with ∆ρ  < 5×10-4.  From Fig. B3a, we see that for a density
change of ∆ρ = 5×10-4, a capacitance resolution of δC/C = 1×10–7 must to be achieved with an
AC excitation voltage across the capacitor of ≤ 1V at t = 1×10-6.  

Chan et al. [60] used two identical capacitors to form an AC capacitance bridge with an
excitation voltage of 16 V rms (8 V rms across the detecting capacitor), and they achieved a
resolution of about δC/C = 3×10-9 with a lock-in time constant of 4s.  Since δC/C is linearly
proportional to the excitation voltage, a reduction in the excitation voltage from Vexc = 16 V to 1.6
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V (0.8 V rms across the detecting capacitor), leads to a factor of 10 resolution reduction from
δC/C = 3×10-9 to 3×10-8.  Our analysis shows that a resolution of δC/C = 5×10-8, with Vexc = 1V
rms across the capacitor and a signal-to-noise ratio of 1, can be achieved using a 1s time constant
by making several changes in the ground-based AC capacitance bridge system.  

As t increases, the susceptibility χT decreases.  At t = 1×10-2, the required electric field E for
inducing δρ∗  = 5×10-4 is E = 3.6×106 V/m (V = 181 V in Fig. B3a), which is about 10 times
smaller than that needed for the dielectric break down of fluid 3He [61].  On the other hand, the
mechanical deformation of the capacitor gap by the high electric field will introduce uncertainty in
the density measurement.  The attractive electric force decreases the effective capacitor gap and
therefore increases the measured capacitance in addition to that caused by the electrostriction in
the fluid.

The deformation of a capacitor plate is proportional to R4/δ3,  where R is the radius and δ is the
thickness of the plate. The calculation in Fig. B3b uses the geometry of the currently employed
capacitor (R = 0.5 cm, δ = 0.0028 cm); it shows that capacitance change due to the gap distortion
equals the capacitance change due to the electrostriction at t = 4×10-3.  A reduction in R and/or an
increase in δ can reduce the deformation.  However, the minimum radius of the capacitor plate is
set by the requirement of a good signal-to-noise ratio.  The maximum thickness of the plate is set
by the sample cell gap, since one plate has to be emerged completely in the 3He fluid in order to
avoid any pressure effect.  For the MISTE ground-based studies, the cell height is h  = 0.05 cm,
which limits the capacitor plate thickness to δ = 0.0028 cm.  For the flight experiment, the
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capacitor plate suspended in the sample will be made of 0.2 cm thick sapphire.  The gap distortion
will be negligible.  Since the DC power requirement is 200 V in the LTMPF design, this defines
the upper limit for the electrostriction technique at t = 1×10-2 for a gap of 50 µm.

Since the conventional technique is adequate for t > 6×10-5 and the electrostriction technique
is adequate for t < 1×10-2, we can use the conventional technique to calibrate the electrostriction
technique over the range where the two overlap.  The capacitor gap used to calculate the electric
field is either 50 or 150 µm.  It would be difficult to measure such a small gap with an accuracy of
1%.  However, this uncertainty in the capacitor gap can be reduced through calibration, and the
gap should change very little at smaller reduced temperature.

Very close to the critical temperature, χT becomes a strong function of the density.  When the
density change inside the capacitor gap is not small, χT cannot be taken as a constant out of the
integral in Eq. (B16).  Since the integration in Eq. (B16) is the chemical potential difference
between the fluids within and outside the capacitor gap, we can solve θ2 numerically for a given t
and E from

    
E

P
r r rc

c
c

2

0
2 2 1 1 2 2

22
3

1= −[ ] −[ ]ε ζ
µ θ µ θ ζ ρ θ∆ ∆* * *( , ) ( , )  ( , ) . (B18)

Here ∆µ∗  is given by Eq. (B3), r is derived from Eq. (B1), and ρ∗  = 1 + ∆ρ is from Eq. (B2).
Once E and ρ2 are known, we have δρ = ρ2 − ρ1 and can evaluate an effective susceptibility using
Eq. (B17) and compare it with the one for E = 0.  The results for two reduced temperatures and
ρ1 = ρc are shown in Figs. B4 and B5.

Let us take the rms excitation voltage across the detecting capacitor to be 0.500 V, which is
close to the lower experimental limit.  For t = 1×10-6, the 3He fluid is already compressed by
δρ0

*  = 2.24×10-4 from ρc by this rms excitation voltage even before a DC bias is applied.  An
applied Vdc = 0.47 V will be required to produce a 1% density change (δρ* = 2×10-4) assuming a
density resolution δρ* = 2×10-6.  The total change from the ambient density is equal to the one
induced by an equivalent rms V = 0.69 V.

The theoretical model developed above is being used to analyze the electrostriction technique
data.  The experimental procedure for measuring the density versus applied voltage squared is as
follows: 1) accurately determine the rms Vexc across the detecting capacitor; 2) measure ρ before
applying an additional DC voltage; 3) measure a series of δρmeas(Vdc ≠ 0).  We choose to fit
δρmeas(Vdc ≠ 0) versus V V Vexc rms dctot

2 = +,
2 2  with a polynomial,

       δρmeas fit tot tot tot= + + + +A AV AV AV0 1
2

2
4

3
6 L. (B19)

Here A0 has a negative value that corresponds to the density change due to the pre-compression
by the rms Vexc.  By definition,

A
V
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0= = ≠ +
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∝ ( )
→ →

lim lim
( ) | |

,tot tot
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tot
2

measδρ δρ χ ρ . (B20)

Thus, by deriving A1 we can determined χΤ at the ambient density ρ1 using Eq. (B17).
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Critical Isotherm

The electrostriction technique can also be used to measure the susceptibility along the critical
isotherm.  Along the critical isotherm the changes in pressure and density are related by the
expression

∆ ∆ ∆P D= −ρ ρ δ 1
. (B21)

Taking into account the most important correction to scaling term, the relationship above
becomes

∆ ∆ ∆ρ δ ζ= ( ) +( )P A B P1 1/ , (B22)

where A = D1/δ and B are nonuniversal amplitudes and

ζ ω
η

=
+ −

≈2
2

0 32
d

. 18. (B23)

Here ω ~ 0.5/ν with ν and η being critical exponents and d = 3 being the system dimension.  The
expression for the derivative of the density with respect to pressure derived from Eq. (B22) is

∂ρ
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By multiplying Eq. (B24) by (1 + ∆ρ), one can obtain the susceptibility.  However, the
multiplication of (1 + ∆ρ) distorts the single power law divergence of the susceptibility since ∆ρ
will vary by up to 20% in the range where the critical isotherm is planned to be measured.  As a
first order approximation, we write

χ
δ
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δ
δ ζ

T

A
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∆ ∆
1

1 1 . (B25)

To carry out a theoretical calculation along the critical isotherm, we neglect the correction to
scaling term and continue to use the restricted cubic model, in which θ = ∆ρ/|∆ρ|/b from Eq. (B1).
Using Eqs. (B2) and (B4), we have
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Here we use δ = γ/β + 1.  Therefore, by using the electrostriction technique to measure χΤ versus
∆ρ along the critical isotherm, we can obtain the leading nonuniversal amplitude and an exponent
with its value equal to δ − 1.  Combining Eqs. (B17) and (B26), we have a relation between the
applied electrical field E and induced density change δρ* for a given reduced density ∆ρ:
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In Fig. B6 we show the required DC bias as a function of reduced density ∆ρ for an induced
density change of δρ* = 5×10-4.  Assuming an experimental voltage range of 1 – 200 V, the
electrostriction method will be viable over the range of 7×10-3 < ∆ρ < 0.15.

We should be able to perform measurements along the critical isotherm over the range
|∆ρ| > 7×10-3 assuming the MISTE goal of determining the critical temperature Tc with an
uncertainty of ∆T/Tc ≈ 3×10-7 (see Fig. 25).  Figure B7 shows the calculated density change in
the capacitor, using Eq. (B18), as a function of the total applied rms voltage for t = 3×10-7 and
ambient density ∆ρ1 = 1×10-2.  This analysis shows that a DC bias voltage ~ 0.8V is required to
measure the susceptibility to ~ 1% for the MISTE goals along the critical isotherm.  This can be
achieved using a modified version of the existing ground-based capacitance bridge.

Isotherm Measurements by Electrostriction

Figures B4, B5, and B7 essentially show the measurements of three isotherms at different
temperatures with ambient density ρ1 =  ρc.  These measurements require an extrapolation to
zero voltage in order to obtain χT (ρc).  Since the flight cell will be filled at the critical density
before the launch to the space station, the initial electrostriction measurements will be performed
with ρ1 =  ρc.  We plan to also perform electrostriction measurements with the ambient density
of the cell slightly below  ρc.  Under this condition, an isotherm curve of the measured ∆ρ2

versus V2 will include an inflection point that is associated with ρc.  Thus, we can determine χT

(ρc) very close to Tc with much higher accuracy from these electrostriction measurements.  Figure
B8 shows the prediction for such measurements along the critical isotherm and t = 5 × 10-6.
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Fig. B6. Required voltage for inducing δρ∗  = 5×10-4 versus reduced density.  The
calculation is made along the critical isotherm using Eq. (B26).
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Appendix C Density Stratification

In this appendix we discuss additional causes of density stratification within the
measurement cell that can lead to errors in experimental measurements.  We have already
discussed the effects of the gravity induced density gradient (see subsection 1.2) and the effects
of a temperature gradient (see subsection 3.7).  In this Appendix we investigate surface induced
density profiles associated with van der Waals forces and the diverging correlation length.  The
diverging correlation length leads to two different effects.  One is from the boundary condition of
order parameter and the other is from the confinement of a fluid in a narrow gap.  The resultant
density profiles associated with these effects can produce significant errors in susceptibility
measurements close to Tc performed by the electrostriction technique discussed in Appendix B.
These density profiles lead to smaller error (~ 0.1% at t = 10-6) in the measurement of the heat
capacity at constant volume.  We will also present an analysis of a typical microgravity heat
capacity measurement along the critical isochore in the single-phase region.  This analysis will
estimate the maximum accumulative density stratification generated by the temperature steps
required for the heat capacity measurements.

Influence of Surface Interactions and Finite Size Effects on Susceptibility Measurements

We have both an experimental and theoretical plan for addressing the influence of surface
interactions on the MISTE susceptibility measurements performed using the electrostriction
technique.  In this technique, measurements are performed in a small capacitance gap where
surface effects can account for a non-negligible contribution to the measured susceptibility.  We
are developing theoretical approaches to calculate surface interaction contributions so that our
experimental measurements can be corrected for these effects.  

The theoretical analysis of surface interactions given below indicates that the measured
susceptibility using electrostriction consists of three contributions.  The first one (van der Waals)
is from a high density (dead) layer next to each plate, a second one (correlation length) is
associated with the boundary condition of the order parameter), and a third one (finite size) is
due to the confinement of the bulk fluid in the middle.  The finite size effect contribution is found
to be completely negligible for this experiment.  For the first two cases, the fractional difference
between the measured susceptibility, χT, and the bulk susceptibility, χT

B , is proportional to a
boundary layer thickness scaled by the capacitor gap, d.  As Tc is approached, the boundary
layer thickness grows, and the difference between χT and χT

B  increases.  For a capacitor gap of 50
µm and at a reduced temperature t = 10-6, the boundary layers caused by the van der Waals force
and the diverging correlation length are estimated to cause a ~5% and ~6% maximum fractional
error in the susceptibility respectively.

One way of minimizing these errors is to increase the size of the capacitor gap.  We plan to
have two density sensors with 50 and 150 µm capacitor gaps for the flight experiment.  The use
of a 150 µm capacitor gap should reduce these surface interaction errors by a factor of three (i.e.,
~1.7% for van der Waals and ~2% for correlation length).  An advantage of having two different
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size capacitors is that boundary effects associated with both van der Waals and diverging
correlation length can be corrected experimentally.  Our theoretical analysis shows that the dead
layer thickness does not depend on the capacitor gap.  Therefore, its effect can be determined
from the measurements by using two capacitors of difference gap sizes.  Combining these
experimental and theoretical approaches should allow us to perform accurate isothermal
susceptibility measurements to a reduced temperature t ≈ 10-6.  

Experimental Minimization of Surface Effects

Here we describe how to calculate the dielectric constant of a bulk fluid by using two
capacitors with gaps of d1 and d2.  When the dielectric constant varies across the gap, d, of a
parallel plate capacitor, the total capacitance is

1 1
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0

1

C C
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z
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˜

( ˜)ε
, (C1)

where C0 is the empty cell capacitance, and z̃  is the distance from one boundary scaled by the
gap d.  Assuming that the dead layer has a thickness of δ and dielectric constant of εS, then Eq.
(C1) becomes
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where εB is the dielectric constant of the bulk fluid.  Since the dead layers are the same, δ and εS

are the same for the two capacitors.  We can further assume εB to be the same when the electrical
field is the same within the capacitor gaps.  By eliminating the dielectric constant of the dead
layer from Eq. (C2) for each capacitor, we obtain
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where we have chosen d1 = 3 d2.  Therefore, we can correct for the boundary layers associated
with van der Waals and diverging correlation length effects.

For a first order approximation, we can explicitly write the measured susceptibility as
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where χT
S  is the surface contribution.  This expression can be simplified to give
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By solving Eq. (C4) for χT
S  and equating for both capacitors 1 and 2, we can solve for χT

B ,
obtaining,
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Here we have again chosen d1 = 3 d2.  In the case of using electrostriction to measure
susceptibility, we have to take into account the fact that the correlation length is density
dependent.  To make sure that the dead layer thickness is the same, the electrical field will be
adjusted to be the same, so that the density change is the same.  In reality, both the van der Waals
field and the diverging correlation length effect exist in the same boundary, and it is unclear at this
stage how they interplay and affect each other.  However, Eqs. (C3) and (C6) remain valid as
long as the equilibrium thickness of the dead layers resulting from both effects is the same for the
two capacitor gaps.  Thus we can experimentally correct for these surface effects.

Mean Field Calculation of van der Waals Surface Interactions

It is possible to perform an initial, mean-field-theoretical analysis of the effect of the van der
Waals surface interaction on the susceptibility of an O(1) system.  The interaction has the same
effect as a gravitational field has on a liquid gas system.  There is no precedence for this analysis,
in that there is no published discussion of a symmetry-breaking field that is localized to the
immediate vicinity of the bounding surface of a system, but that is not strictly delta-function-
like.  In particular, there are no published results relating either to the mean field approximation
to the influence, or to the renormalized effect of such a symmetry-breaking field.  As it turns out,
the mean-field analysis is relatively complicated.  In fact, some results cannot be obtained
without recourse to numerical methods.  Here, we will summarize the results of this analysis, and
we will infer a simple formula for the effect of the sort of surface interaction thought to be
present in the case of 3He.  We will then postulate a renormalized version of the results that we
will obtain here.  These will form the basis of our estimation of the effect of van der Waals
surface interactions on the susceptibility of 3He in the immediate vicinity of its liquid-vapor
critical point.

According to standard approaches to the fully-retarded van der Waals interaction between a
liquid-vapor system, that interaction has the form [62]
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The quantity α(0) is related to the polarizability of He atoms.  The variable x in Eq. (C7) is the
distance from the surface, and x0 is the order of an interatomic distance.  The way in which this
field enters into the general theory of the critical point of an O(1) system is in the Ginzburg-
Landau-Wilson effective Hamiltonian
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1
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where we are assuming that the order parameter,
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 , (C9)

the reduced density, depends only on the distance from the bounding surface.  The field h(x) is
replaced by the van der Waals interaction in Eq.(C7).

Key portions of the mean field calculation are unavoidably numerical, in that there is no
analytical solution to the equations that must be solved in order to obtain a response.  However,
the strategy of the calculation is fairly straightforward.  We start with the mean field equation of
state,
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Here, we have added a constant ordering field, which will allow us to calculate the bulk
susceptibility, defined as

χT
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h
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If the system is infinite in extent, then this extensive quantity, which increases as the system’s
volume, is also infinite.  However, we are interested in the alteration of the susceptibility, which
grows as the area.  The modification of the susceptibility will ultimately be parameterized in
terms of the thickness of a “dead layer.”  This notion will be developed and defined shortly.

The calculation of the susceptibility proceeds as follows.  We begin by solving Eq. (C10)
with h0 = 0.  This yields an order parameter profile s0(x).  We then introduce an infinitesimal h0

into the equation of state (C10).  The order parameter profile suffers an infinitesimal change s1(x)
in response.  The equation satisfied by s1(x) is
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 (C12)

where the operator L is given by
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L = −
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dx2 + r + 3us0 x( )2
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The solution to this equation is, symbolically,

s1 x( ) = L−1h0  . (C14)

The susceptibility is the integral of s1(x), divided by h0.  The alteration of the susceptibility is
this integral, minus the integral of the susceptibility as given by the integral of s x1

0 ( ) divided by
h0, where

s1
0 x( ) = L0

−1h0 (C15)

with

L0 = −
d2

dx2 + r  . (C16)

The calculations are all carried out in the presence of appropriate boundary conditions.  Here, we
will assume that Neumann boundary conditions hold at the surfaces of the system.  These
boundary conditions are termed “special” in the parlance of surface critical phenomena, in that
they imply a particular combination of surface parameters, and are, in fact, not expected to be
generic to O(1) systems in general.  However, these are the boundary conditions for which a
surface ordering field has the greatest impact on the bulk susceptibility.

Because of the nontrivial nature of the surface ordering field, the solution of the equation of
state (C10) with h0 = 0, and the subsequent solution of the response equation (C12) are both
necessary numerical.  There are relatively straightforward algorithms for the extraction of
solutions to those equations, and they have been utilized in the analysis that follows.

In order to ascertain the effective strength of the surface ordering field associated with the van
der Waals interaction, we make use of the following parameters, characteristic of the 3He liquid-
vapor critical point.

Parameter Value of the parameter

Critical density, ρc 4.145 ×10-2 g/cm3

Susceptibility, χT 2.25 × 10-10 g sec2/cm5 × t-1.24

Correlation length, ξ 2.56 × 10-8 cm × t-0.63

Inserting these values into the Ginzburg-Landau free energy, and adjusting them so that the
amplitude of the isothermal susceptibility is correct when calculated from the susceptibility of
this order-parameter-based model, we end up with the following effective strength of the
effective van der Waals surface interaction

1856
1 4x +( )

 , (C17)

where the expression is now dimensionless, and the length is expressed in “fundamental”
correlation length units, 2.56 Å.
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The remainder of the calculation makes use of this expression for h(x) in the effective
Hamiltonian and the equation-of-state.  Before proceeding, we note that it is possible to obtain an
exact expression for the modification of the susceptibility of a system in which there is a surface-
ordering field of the form

h x h xs( ) = ( ) δ , (C18)

then the excess susceptibility is given by
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Recall that this is the difference between the net change in the order parameter induced by a
constant external field that results from the presence of a surface-ordering field.  The fractional
change in the susceptibility is obtained by dividing this expression by the bulk susceptibility.
The end result of this renormalization of the susceptibility is
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As the critical point is approached – that is, as r→ 0 – this correction goes to –2/r1/2, or as twice

the correlation length, in the mean field approximation (ξ ∝  t1/2 ∝  r1/2).  This can be interpreted in
terms of a “dead layer” in which the order parameter is immobilized by the surface-ordering field.
The width of the dead layer saturates at twice the correlation length.  Equation (C20) will provide
the reference for our calculations.  In particular, we will see how the calculated susceptibility
modification compares with the asymptotic form 2ξ.

The mean field calculation for the case of a realistic van der Waals surface interaction has been
performed, using Eq. (C17) for the magnitude of the effective surface-ordering field.  Figure C1
shows the relative change of the susceptibility as a function of reduced temperature.  The
numerically calculated relative change, shown as solid circles in Fig. C1, can be recast into the
following expression,
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 . (C21)

The additional power-law dependence on reduced temperature in Eq. (C21) is not anticipated in
our approach, but was found to provide an excellent fit to the numerical results over six decades
in reduced temperature.  We can interpret the above expression in terms of the existence of a
“dead layer”, the thickness of which is equal to δ ξ= ( )11 2 0 1. .t t , where ξ(t) is the bulk correlation
length.  Using the expression for the experimental correlation length in the table above, we obtain
the following estimate for the width of the dead layer,
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δ = −28 6 0 53.   .t Å  . (C22)

We wish to emphasize that the above expression is essentially phenomenological, in that it is
based on a power-law fit to data generated in a numerical mean field calculation.  The genesis of
this unexpected power-law behavior is currently under study.  Early indications are that it ought
to hold in general, but results of this investigation are, as yet, preliminary.  Figure C2 shows the
width of this dead layer, in Angstroms, compared with twice the bulk correlation length, the
limiting width of the effective dead layer in the case of a surface ordering field that is confined
entirely to the bounding surface, according to a mean field calculation.
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Fig. C1. The relative change in the susceptibility as a function of the reduced
temperature.  The solid circles are from numerical calculations.  The
cross is calculated from a δ−function surface interaction, and the solid
line is the asymptotic form of the cross.
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temperature, t, shown as a solid curve.  The dashed curve is the size of
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The graph in Fig. C2 is summarized in this table:

Reduced temperature, t, Single dead layer width, in Å
10-1 97
10-2 3.25 × 102

10-3 1.11 × 103

10-4 3.75 × 103

10-5 1.27 × 104

10-6 4.33 × 104

At t = 10-6, the dead layer width is about 4.33 µm.  The width of the two dead layers at both

plates is about 17% and 6% of the 50 and 150 µm capacitor gaps respectively.  Therefore, we

expect that the fractional changes in the measured susceptibility using the 50 and 150 µm gap
capacitors will also be 17% and 6% respectively.  These numbers are different from the data
shown in Fig. C1 since the experimental correlation length is used for Eq. (C22) while the mean-
field expressions are used in Fig. C1.  The total dead-layer width is compared with capacitor gaps
of 50 and 150 µm in Fig. C3.

In the present calculations, the derived density profile in the dead layer is very large (∆ρ*
layer

= ∆ρlayer/ρc > 100%).  This large value is inconsistent with the Ginzburg-Landau-Wilson
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Fig. C3. The total width of the dead layers between capacitor plates, based on
the formula in Eq. (C22) versus reduced temperature. For comparison,
the two dashed lines are the capacitor gaps of 150 and 50 µm.
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effective Hamiltonian.  By introducing a cut-off density, the dead layer thickness will be reduced.
We have estimated the effect of a cut-off density by introducing a φ6 term in the effective
Hamiltonian.  This calculation leads to a thickness reduction of a factor of 1.8 for one dead-layer,
which in turn infers that the fractional changes in the measured susceptibility using the 50 and
150 µm gap capacitors will be ~5% and ~2% respectively.  Other approaches to determine the
cut-off density and the effects of renormalization due to critical point fluctuations will also be the
subject of theoretical work in the near future.  In addition, we plan to collaborate with Professor
Efstratios Manousakis who can perform Monte Carlo calculations that will provide an alternative
approach to elucidate boundary layer effects.

Effects due to a Diverging Correlation Length

The diverging correlation length affects the measured susceptibility in two aspects when a
narrow gap capacitor is used in the electrostriction technique.  The first has to do with the effect
of boundary conditions on the order parameter while the second is associated with the
confinement of the fluid in a narrow gap where finite size effects become important.

With regard to a “standard” boundary condition, one can perform a mean field theory
calculation of the susceptibility in the given mixed boundary conditions of the form

dm x( )
dx

x=0

= cm 0( )  . (C23)

The calculation is carried out in much the same way as in the case of the evaluation of the effects
of a surface ordering field.  One solves the equation of state (C10) with non-zero h0, but in the
absence of a surface field, hs(x).  The susceptibility is the derivative of the integrated order
parameter with respect to h0.  Here, the surface has its maximum effect in the limit of Dirchlet
boundary conditions (c → ∞).  When c = 0, the boundary conditions are Neumann, and the
susceptibility, in the mean field limit, is unaltered.  The general result for the relative change in
the susceptibility is

∆χ
χ

ξ ξ
ξ

T

T
B d

c

c
= −

+
2

1
 , (C24)

where ξ is the correlation length.  This is consistent with a dead layer whose width is equal to
δ = cξ/(1+cξ).  This width is always smaller than the correlation length, although
c cξ ξ/ ( )1 1+ →  as the critical point is approached.

With regard to the confinement in a small capacitor gap, there is a simple calculation that
yields the change in the susceptibility of a region with finite width.  Again, making use of mean
field theory, and assuming Dirichlet boundary conditions, which maximize the influence of the
boundary in the absence of a surface ordering field, we obtain the relative change between the
measured and bulk susceptibility,
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∆χ
χ

ξ
ξ

T

T
B d

d= −2
2

tanh  . (C25)

Equation (C25) can be interpreted as the combined effects of boundary conditions, 2ξ/d, and
confinement, tanh(d/2ξ).  In the limit of infinite width, Eq. (C25) displays the result of there
being two dead layers with a thickness equal to the correlation length, one at each bounding
surface.  The confinement effect is proportional to 1 − tanh(d/2ξ), which vanishes as 2exp(-d/ξ)
for large d/ξ.  This gives us a means for gauging the possible relevance of finite size effects to the
analysis of MISTE data.  At t = 10-6, the correlation length is about 1.54 µm.  This is to be
compared with a width of 50 µm for the smaller capacitor gap.  The fractional influence of finite
size effects will be on the order of 2 ×10-15 and is effectively infinitesimal for a gap of 50 µm.
Therefore, we conclude that the confinement by the capacitor gap will not give rise to
complications in the experiment as presently configured.  However, the effect of the boundary
condition will cause errors in the measured susceptibility.  In Fig. C4, we plot the relative change
in the measured susceptibility, calculated from Eq. (C25), versus reduced temperature.  At t =
10–6, the boundary condition effect will lead to about 6% and 2% errors for capacitor gaps of 50
and 150 µm respectively.  In reality, the parameter c is finite, and thus the dead layer will be
smaller than the correlation length, leading to errors smaller than shown in Fig. C4.  We are
planning to perform a more precise calculation of this effect in the near future.

Influence of Surface Interactions and Finite Size Effects on Heat Capacity Measurements

Finite size effects in the heat capacity can be estimated by using the Gaussian approximation
formula for the entropy.  According to this approximation, the entropy is given by
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Fig. C4. The relative changes in measured susceptibility versus reduced
temperature.  The calculation is based on Eq. (C25).
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1

r + q2
r 
q 

∑  , (C26)

where r is the inverse square of the correlation length in the Gaussian approximation.  The sum is
over the allowed values of the wave vector 

r 
q .  By assuming a slab geometry where the slab width

is d, the allowed values parallel to the slab will be continuous, while the allowed values of the
component of the wave vector perpendicular to the walls around it will be given by

qx =
nπ
d

 , (C27)

where n is an integer not equal to zero.  The reason that qx is not allowed to be zero is that
Dirichlet boundary conditions are assumed, requiring the mode to have the form sin qxx in the x-
direction.  The sum in Eq. (C26) is performed by first doing the portion of it that is over n.
Making use of standard summation tricks, the sum of interest is

1

r +Q 2 +
nπ
d

 
 
 

 
 
 

2
n=1

∞

∑ =
d

2 r +Q 2

1

tanh r +Q 2 d( ) −
1

2 r +Q 2( )  , (C28)

where Q is the wave vector component parallel to the slab.  The difference between the first term
on the right hand side of Eq. (C28) and its d = ∞ limit is the finite size correction that is
exponentially small.  The second term is the surface interaction correction to the specific heat.  In
the following we will consider the two contributions separately.  First, we look at the
confinement effects.  The evaluation of this contribution to the change in the entropy of the slab
system involves the summation, actually the integration, over the wave-vector Q.  By performing
the sum over parallel components of the wave vector, the difference mentioned above is given by

dd −1Q
1

r +Q 2

1

tanh r +Q 2 d( ) −1

  

 

 
 
 

  
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 
 
 ∫  . (C29)

The proportionality factors have been left out.  The ratio of this difference to the full entropy in
the Gaussian approximation is given by

dd −1Q
1

r +Q 2

1

tanh r +Q 2 d( ) −1
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∫

dd −1Q
1

r +Q 2
∫

 . (C30)

We are interested in the ratio of the specific heat correction to the full specific heat.  To
obtain this ratio, the derivatives of the numerator and denominator in Eq. (C30) are taken with
respect to the reduced temperature that is proportional to r in the mean-field limit.  This leaves
the expression
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The denominator can be replaced by the standard leading order expression for the specific heat,

ν
α

r −α  , (C32)

where α and ν are the critical exponent of CV and ξ respectively.  As for the numerator, one can
obtain an expression that scales properly, while having the form that corresponds to the
numerator in Eq. (C31) in the mean field limit.  This scaling form is

r −α 1+ y2( )−3/ 2 1

tanh 1+ y2 d / ξ( ) −1
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This expression implies that the ratio of the finite size correction to the infinite system of the
specific heat is
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This is a complicated expression that is dominated by the exponentially small form
exp(–2d/ξ).  This term is as small as the corresponding term in the expression for the
modification of the susceptibility (see after Eq. (C25)).  Figure C5 shows the expected
temperature dependence of the heat capacity corrections for the case of slabs having widths of
d = 0.005 and 0.0005 cm.  As it can be seen in Fig. C5, the finite size heat capacity correction is
expected to be extremely small, ~ 0.13% for d = 0.0005 cm and the closest reduced temperature
of t = 10-6.
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Fig  C5 The ratio of the finite size correction to the bulk specific heat as a function
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In the same spirit used in determining the susceptibility change (see Eq.(C5)), we estimate
that the expected change in heat capacity due to finite size effects can be given by

∆ ∆C

C

V

V

C

C
V
meas

V
B

fs V
fs

V
B=

tot

 . (C35)

The expected slab volume with d < 0.0005 cm for the MISTE flight cell is < 0.5% of the total
volume.  By taking into account the volume ratio using Eq. (C35), this alteration of the measured
specific heat is reduced by another factor of 0.005, leading to a negligible correction of 6 ppm.

It is also possible to assess the surface-related reduction in the specific heat.  Making use of
standard scaling tricks as applied to the last term on the right hand side of Eq. (C28) we find that
the ratio of the surface-related reduction in the specific heat to the bulk specific heat is given by

∆C

C

t

d
V

V

surf

= ( )α
ν

π ξ
4

(C36)

In Figure C6, we display this correction as a function of reduced temperature, t, for d = 0.05,
0.005, and 0.0005 cm.

The maximum value of the ratio of the surface-related reduction in the specific heat to the bulk
specific heat, as given by Eq. (C36) for d = 0.0005 cm and t = 10-6.  For these conditions, the
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Fig. C6 The ratio of the surface-related  reduction in the specific heat to the bulk
specific heat for a surface thickness of d = 0.05, 0.005, and 0.0005 cm.
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ratio is equal to 4.2%.  The expected surface volume within a distance d < 0.0005 cm for the
MISTE flight cell is ~ 2.4% of the total volume.  Again using Eq. (C35) for the case of surface
interactions, we see that with the additional factor of 0.024 due to the volume ratio, we are left
with a net change in the measured specific heat of 0.1%.  This systematic error in the specific
heat is less the 1% requirement at t = 10-6 for the MISTE flight experiment.

Density Change Associated with Timeline for Typical CV Measurement

The temperature and density in the MISTE cell will often need to be changed in performing
experimental measurements.  Near the critical point these changes will lead to a density
stratification within the cell that will take a long time to dissipate, as discussed in subsection 3.7.
These long equilibrium time constants must be taken into account in developing the experimental
timeline for the flight experiment.  For heat capacity measurements, we require a density
homogeneity < 0.1 %.  In this Appendix, we illustrate the expected density distribution in the
cell during a typical set of CV measurements taken along the critical isochore above the transition.

In developing the CVX experiment [32], Berg presented a thermodynamic expression for the
maximum density change expected in the interior of a cell, ∆ρin/ρc, corresponding to a
temperature change from T1 to T2,

∆ρ ρin c V Vt

t
T P C dT= ∂ ∂( ) ∫* * *

wall
1

2

. (C37)

Here T* = T/Tc, P
* = P/Pc, CV

* = (Tc/Pc)ρCV and t1 and t2 are reduced temperatures.  Substitution

of 3He thermodynamic values for ∂T*/∂P* and CV
*/T* [27] into this expression gives

∆ρ ρin wallc t

t
t t dt= ( ) − +( ) +( )−∫1 3 41 0 615 3 56 10 1

1

2

. . . . . (C38)

or

∆ρ ρin c t

t
t t t t t= ( ) − − + +( )[ ]1 3 41 0 615 0 3075 3 956 1 872 2 0 1

1

2

. . . . . . . (C39)

For a large temperature quench of t1 = 6×10–4 and t2 = 0, we get ∆ρ*
in = ∆ρin/ρc = 0.08% for 3He

that is smaller than the required maximum density homogeneity of 0.1 %.  The heat capacity
measurements will actually be performed at a large number of reduced temperatures as Tc is
approached from above.  The experimental cell will remain at each temperature until thermal
equilibrium is approximately reached.  The density stratification induced by each temperature
change will be relaxing during the equilibration time.  The accumulated equilibration times will
lead to a total density inhomogeneity that is less than 0.08% determined from a one-shot quench.

A detailed time line for the CV measurements in the single-phase region is being prepared to
clearly determine the expected density stratification.  We are also developing advanced modeling
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programs to estimate the expected equilibration time and the remaining density inhomogeneity for
the CV measurements using a pulse technique in the two-phase region.


